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Using the Bernoulli integral for air streamline with condensing water vapor a stationary axisymmetric
tornado circulation is described. The obtained profiles of vertical, radial and tangential velocities are in
agreement with observations for the Mulhall tornado, world’s largest on record and longest-lived among
the three tornadoes for which 3D velocity data are available. Maximum possible vortex velocities are
estimated.
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1. The condensational pressure potential

Tornado circulation induced by water vapor condensation can
be described as follows. Condensation of water vapor in the adia-
batically ascending air results in a drop of air pressure by �p = pv ,
where pv is water vapor pressure at the Earth’s surface. The de-
crease of pressure along the vertical axis sustains the ascending air
motion with vertical velocity w and induces a compensating hori-
zontal air inflow with radial velocity u. The converging radial flow
has maximal velocity at the surface, where the magnitude of the
condensation-induced pressure drop is the largest. Radial velocity
approaches zero at a certain height z = h, which approximately
coincides with the cloud height. In the upper atmosphere at z > h
the condensed water is transported away from the condensation
area by the strong updraft and outgoing air flow. It precipitates at
a considerable distance from the center of the condensation area.

The continuity equation in the cylindrical system of coordinates
relates radial u and vertical w velocities of the axially symmetrical
vortex as w = (h/r)(∂ur/∂r). The vertical and horizontal pressure
gradient forces induced by condensation are �p/h and ∂ p/∂r, re-
spectively. Equating the power of the vertical and radial air flow,
u ∂ p/∂r = w(�p/h), and accounting for the continuity equation,
we obtain ∂ p/∂r = �p(ur)−1(∂ur/∂r). This corresponds to pres-
sure potential p = �p ln ur + const [1]. Its exact derivation is given
in work [2].

2. The Bernoulli integral for condensation-induced tornadoes

For the high wind velocities of intense vortices to arise, the
condensational pressure gradients within both tornadoes and hur-
ricanes must significantly exceed turbulent friction. In such a case,
the Euler equations possess a Bernoulli integral for the streamline:
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Here u, w and v are the radial, vertical and tangential velocities,
respectively, r is distance from the center of the condensation area,
r = r1 is the outer border of the condensation area, ρ is air density,
uc is the velocity scale determined by water vapor condensation, a
is angular momentum per unit air mass, and z < h is the region of
converging streamlines (u > 0).

It is convenient to use the following units

�p = 1, uc = 1, ρ = 2, r1 = 1. (4)

In these units, the Bernoulli integral and the pressure potential be-
come dimensionless
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where u1 ≡ u(r1), w1 ≡ w(r1), and a ≡ v1 ≡ v(r1).
Let us introduce a new variable y ≡ ur/u1. Then Eq. (5) takes

the form of a nonlinear differential equation on y:
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Real solution of Eq. (7) exists at those r only, where the expression
under the square root in Eq. (7) is positive. The internal radius
r = r0, where condensation ceases, is obtained by equating the last
term in the round brackets in Eqs. (5) and (7) to zero at y(r0) = r0,
which is equivalent to u(r0) = u1. Condensation commences at r1
and ceases at r0 at one and the same radial velocity u1. As fol-
lows from Eq. (7), the following relationships are simultaneously
satisfied:

a2

r2
0

− a2 + ln r0 = 0, y0 ≡ y(r0) = r0, (10)

y1 ≡ y(r1) = 1, y′
0 ≡ y′(r0) = r0 y′

1, (11)

u0 ≡ u(r0) = u1, w0 ≡ w(r0) = w1 = u1hy′
1. (12)

At r = r0 all condensational potential energy is converted to the
kinetic energy of rotation. At r < r0, real solutions of Eq. (7) for
velocities u, v , and w do not exist.

Eq. (7) is a first-order differential equation with one boundary
condition: y1 = 1 (u(r1) = u1) or y0 = r0 (u(r0) = u1). If at fixed
y1 one considers the constant y′

1 in Eq. (7) as a free parameter,
then in the general case the interval, where real solutions exist,
does not include the point r = r0, which means that the maximum
velocity vmax ∼ a/r0 is not reached and the tornado does not exist.

Tornado exists, when the interval of real solutions comprises
the point r0 defined by Eq. (10). Solution of Eq. (7), that is real
within the range r0 � r � 1, is obtained by setting the boundary
condition on y at r0 as y0 = r0 and choosing y′

1 at given u1, a and
h such that y1 = 1.

3. Comparison with observations

Data of three-dimensional circulation (the dependencies of the
velocities u, w and v on distance r from the tornado center)
have only recently become available and exist for three tornadoes
[3–5]. We shall consider the Mulhall tornado (Oklahoma, 3 May
1999), which is the longest-lived (1 hour 20 min [6]) and longest-
observed (18 min [5]) among the three as well as world’s largest
tornado on record [5].

According to empirical observations, the intense tornadoes can
occur, when the mean relative humidity at z � 1 km is not lower
than 75–85% [7]. At a characteristic surface temperature 30◦C [8]
and 80% relative humidity the vapor pressure at the surface is pv =
�p � 30 hPa. Taking air density ρ = 1.15 kg m−3 in Eq. (2), we ob-
tain the characteristic velocity uc = 73 m s−1. Velocities v1 and u1
at the external border r = r1 must be the functions of translational
velocity U (speed of movement of tornado as a whole). We put
radial velocity u1 = U/π [2], taking into account that the flux of
moist air via tornado cross-section 2r1U is equal to the flux via tor-
nado circumference 2πr1u1. We put tangential velocity v1 = 2U/π
assuming that the angular momentum of the main streamline
that delivers moist air into the condensation area (see, e.g., Fig. 8
in work [9]) is determined by the mean value of U cosα. Here
0 � α � π/2 is a random angle between velocity at this stream-
line and radius-vector r at the point r = r1, where the air enters
the condensation area. From U = 13 m s−1 [5] we have for dimen-
sionless variables u1 = U/πuc = 0.06, v1 = 2U/πuc = 0.12. For
a = v1 = 0.12, we obtain the eye radius r0 = 0.074 from Eq. (10).
Taking cloud height h = 1.2 km and total size of tornado conden-
sation area r1 = 8.5 km, we have dimensionless value h = 0.14.

For these particular parameters the numerical solution of
Eq. (7) obtained by using conditions (10) and (11) corresponds
to y′

1 = 0.03574 (see Fig. 1A). The account of stationary eye rota-
tion is made in the same way as in work [2], when a certain part
of tangential kinetic energy developed in the condensation area is
spent on solid-body rotation and creation of the pressure gradi-
ent in the eye of radius r0. This lowers tangential velocity in the

Fig. 1. (Color online.) A: Solution of Eq. (7) at a = 0.12 (r0 = 0.074), u1 = 0.06,
h = 0.14 in dimensionless units (4), δp(r) ≡ p(r) − p(0). B: Comparison with obser-
vations for the Mulhall tornado [5] at uc = 73 m s−1, h = 1.2 km (r1 = 8.5 km). The
negative vertical velocity (downdraft) within the tornado eye and the decrease of
radial velocity near r0 is related to non-stationarity of eye rotation not described by
the Bernoulli integral (7), the latter pertaining to the converging ascending stream-
line.

transitional region r0 � r < re between the condensation area and
the eye, where re = 1.65r0 [2]. The expressions for tangential ve-
locity and pressure at r < r0 coincide with Eqs. (23)–(25) in work
[2]. The empirical points shown in Fig. 1B characterize the Mul-
hall tornado close to the time of peak intensity. They correspond
to characteristic vertical velocity w(r) at z = 650 m [5, Fig. 4b],
mean radial velocity u(r) at 150 m < z < 850 m [5, Fig. 4b] and
mean tangential velocity v(r) at 50 m < z < 950 m [5, Fig. 5a].

It is seen from Fig. 1B that to the right side of the maximum
the radial distribution of mean tangential velocity at z � h con-
forms well to the assumption of conserved angular momentum (3).
The choice of h = 1.2 km is supported by observation that in this
layer the radial velocity u(r) exceeds u1 = 4.4 m s−1 over consid-
erable part of tornado circulation [5, Fig. 4b]. (It should be noted
that two other tornadoes, for which the data are available [3,4],
have a significantly lower inflow level, h � 400 m, than the Mulhall
tornado. Mean tangential velocities do not follow the conserved
angular momentum distribution. The decrease of angular momen-
tum towards the center demands a more detailed consideration
with additional parameters [2].)

Total pressure fall as shown in Fig. 1A is 3.6�p = 108 hPa. This
is in agreement with the few available direct measurements of tor-
nado surface pressure. In the Manchester tornado (South Dacota,
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Fig. 2. (Color online.) A: Dependence of eye radius r0 and maximal tangential ve-
locity vmax = a/re , re = 1.65r0 [2] on angular momentum a in dimensionless units
(4). B: Radial velocity u(r) obtained by solving Eq. (7) under conditions (10) and
(11) at a = 0.12, u1 = 0.06 for five values of h (shown near the curves). Points rmin,
rmax and rn shown for h = 5 correspond to radial velocity minimum, maximum
and u(rn) = u1, respectively. C: Dependence of rmin, rmax and rn on h at a = 0.12,
u1 = 0.06. D: Dependence of rmin, rmax and rn on a at h = 0.14, u1 = 0.06; r0(a)

(10).

2003), which was of the same (F4) intensity as the Mulhall tor-
nado, a pressure fall of 100 hPa was registered [5].

4. Conditions of vortex existence and the maximum possible
velocities

With account of stationary eye rotation [2] the maximum wind
velocity vmax = a/re (and, correspondingly, the maximum kinetic
energy) is achieved at re = 1.65r0 (see Fig. 1A), where r0 is a

function of a given by Eq. (10), Fig. 2A. The Earth rotation does
not determine angular momentum in tornado due to the small
linear size of the vortex. The value of a is related to the transla-
tional velocity U . This velocity cannot be infinitely small: tornado
exists at the expense of water vapor accumulated in the atmo-
sphere and, hence, must move to sustain itself [10, pp. 227–229].
Maximum velocity attainable in the condensational vortex depends
only weakly on angular momentum and grows rather slowly (log-
arithmically) with decreasing a (see Fig. 2A). For realistic a � 10−3

(v1 � 0.1 m s−1), vmax does not exceed 1.7uc � 120 m s−1. This
agrees well with the available estimates of maximum wind speeds
in tornadoes [5].

The existence of vortex is related to a certain minimum value
of radial velocity u, which describes the atmospheric inertia with
respect to the development of condensational circulation. At u <

u1 condensation ceases. The condition u0 = u1 corresponds to the
following relationships

u′(r0) = u0

r0

(
y′
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(
y′

1 − 1

r0

)
� −u1
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, (13)

u′(r1) = u0

(
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− 1

)
= u1

(
y′

1 − 1
)
. (14)

This means that there is a minimum of u(r) at r = rmin within
r0 < rmin < r1. The existence of condensation at u(r) > u1 means
that there is also a point r = rmax, r0 < rmax < r1, where u(r) is
maximum. It follows that there is a point r = rn , r0 < rmin < rn <

rmax < r1, where u(rn) = u1. At r < rn there is no condensation
and no condensational pressure potential to accelerate air. When
rn � r0 the maximum vortex velocity a/re , is not reached: vmax =
a/rn 	 a/re . Therefore, tornado exists, if the following condition
κ ≡ (rn − r0)/r0 	 1 is fulfilled (κ � 10−3 for the vortex shown in
Fig. 1).

Analysis of Eq. (7) shows that this condition is violated with in-
creasing h, which, at a fixed height of the atmosphere, corresponds
to diminishing linear size r1 of the condensation area. In Fig. 2B,
profiles of u(r) are shown for h varying from 0.01 to 10. At h � 7.3
we have y′

1 � 1, u′(r1) � 0 and maximum of u(r) at r < r1 disap-
pears. Decreasing a at fixed h also leads to increasing κ , Fig. 2D.
It follows that the smaller the horizontal size of the condensation
area, the larger the angular momentum that is needed for a vor-
tex to arise. A given value of angular momentum sets the minimal
horizontal size of the vortex. For the parameters shown in Fig. 1
the minimum possible vortex, where velocity v � uc � 70 m s−1

can be observed, corresponds to h ∼ 1 (see Fig. 2C). The minimal
condensation area has then radius r1 ∼ 1.2 km and funnel (eye)
radius of about 90 m. At small a and r1 only ordinary squalls can
develop.
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