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Abstract

Convection reduces greenhouse effect by transporting a certain amount of non-
radiative dynamic energy to the upper atmosphere, where this energy dissipates and
radiates into space without interaction with greenhouse substances in the lower atmo-
sphere. In this paper we show that the height of the convective layer zc is finite and5

independent of atmospheric optical thickness τs at large values of the latter. We derive
an analytical formula for zc at large values of τs for condensable and non-condensable
greenhouse substances. The formula obtained yields reasonable quantitative esti-
mates of the observed height of convective layer on Venus and at low latitudes on
Earth, where atmospheric thickness of water vapor is maximum.10

The dissipative power of dynamic convective processes is limited by the incoming
flux of solar radiation. Height of convective layer being finite, values of optical depth
at the top of the convective layer and at the mean height of convective energy dissi-
pation increase proportionally to the atmospheric optical thickness, while the contribu-
tion of convective energy fluxes to formation of the outgoing flux of thermal radiation15

proportionally diminishes. As far as optical thickness of condensable greenhouse sub-
stances grows exponentially with increasing surface temperature, the obtained results
lead to the conclusion that the outgoing thermal radiation into space in the presence of
convection tends exponentially to zero with increasing surface temperature, instead of
reaching a finite plateau as suggested by earlier radiative-convective studies.20

1 Introduction

In radiative equilibrium, when energy is transported in the atmosphere by means of
radiative processes only, the ratio of the outgoing flux of thermal radiation into space to
the upward flux of thermal radiation at the Earth’s surface is, in accordance with Edding-
ton’s approximation, inversely proportional to the amount of greenhouse substances in25

the atmosphere. The atmospheric content of the major greenhouse substance on Earth
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– water vapor – in the presence of liquid hydrosphere rises exponentially with increas-
ing surface temperature. With an account made for the relevant increase in cloudiness
absorbing thermal radiation over entire thermal spectrum, this corresponds to an ex-
ponential decline of the outgoing flux of thermal radiation into space with increasing
surface temperature.5

Non-radiative convective processes could transport a certain amount of dynamic en-
ergy to the upper radiative layer of the atmosphere. There this energy would dissipate
and radiate directly into space, avoiding interaction with greenhouse substances in
any atmospheric layers lower than the upper radiative one. If this convective contri-
bution to the flux of thermal radiation into space were independent of the amount of10

greenhouse substances in the atmosphere, the thermal flux into space would not di-
minish exponentially with surface temperature, as in the case of radiative equilibrium,
but ultimately reached a non-zero plateau. Such a scenario was suggested by sev-
eral radiative-convective studies (Komabayasi, 1967; Ingersoll, 1969; Kasting, 1988;
Goody and Yung, 1989; Nakajima et al., 1992; Rennó, 1997; Pujol and North, 2002).15

Such a scenario would have profoundly different implications for the thermal evolution
of the planets than the exponentially diminishing thermal flux into space. It is important
therefore to verify carefully the physical assumptions underlying the two scenarios.

A constant convective contribution to thermal flux into space implies that at any value
of atmospheric optical thickness convection propagates up to a fixed optical depth, e.g.20

to the upper radiatve layer of the atmosphere, which corresponds to optical depth of
about unity. In this paper we demonstrate that convection propagates up to a fixed at-
mospheric height rather than to a fixed optical depth. The optical depth corresponding
to the top of the convective layer grows proportionally to atmospheric optical thickness.
Given that the dissipative power of the dynamic convective processes is limited by the25

incoming solar flux, this means that the convective contribution to thermal flux into
space diminishes inversely proportionally to the growing atmospheric optical thickness
and does not reach a finite plateau at high surface temperatures. This result allows
to conclude that at large values of atmospheric optical thickness the condition of ra-
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diative equilibrium described by Eddington’s approximation is fulfilled not only in the
stratosphere, but spreads to the entire atmosphere.

In Sect. 2 we consider how height of convective layer changes with increasing op-
tical thickness of an atmosphere containing non-condensable greenhouse gases only
(like CO2). We show that the height of convective layer is finite and independent of5

atmospheric optical thickness at large values of the latter. We demonstrate that the
developed theoretical approach yields the exact numerical value for the height of con-
vective layer on Venus.

In Sect. 3.1 we extend our consideration to condensable greenhouse substances
and show that the results obtained are valid for this case as well. We estimate the10

maximum height of convective layer in an atmosphere saturated with water vapor. The
obtained estimate displays a good agreement with the observed height of convection
at low latitudes on Earth, where atmospheric content of water vapor is maximum.

In Sect. 3.2 we show that the presence of convection in the terrestrial atmosphere
does not decelerate the exponential decline of the outgoing flux of thermal radiation15

into space with growing surface temperature.

2 Convection in an atmosphere with non-condensable greenhouse substances

2.1 Brightness temperature

In the state of radiative equilibrium the dependence between the upward fluxes of ther-
mal radiation into space, Fe, and at optical depth τ in the atmosphere, F +(τ), in a20

spectral interval of resonance absorption of thermal radiation by atmospheric green-
house substances is accurately described by Eddington’s approximation (Michalas and
Michalas, 1984):

F +(τ) = Fe(1 + kτ), k =
3
4

; F +
s = Fe(1 + kτs). (2.1)
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Here and below low index s refer to vales at the Earth’s surface. At the Earth’s surface
the upward flux of thermal radiation is related to surface temperature Ts by Stephen-
Boltzmann formula for the black body radiation. For any optical depth τ (and corre-
sponding height z) the so-called brightness temperature Tb in a given spectral interval
∆λ ≡ λ2 − λ1 is defined as follows:5

F +(τ)=

λ2∫
λ1

IP(λ, Tb)dλ≡δ∆λσT
4
b , F +

s =δ∆λσT
4
s . (2.2)

Here Ts is the surface temperature, σ is the Stephen-Boltzmann constant, IP(λ, Tb) is
Planck’s function, δ∆λ is the relative share of the observed flux F +(τ) of thermal radi-
ation within spectral interval ∆λ in the total flux of black body radiation of temperature
Tb. We assume δ∆λ to be independent of Tb and height z. This assumption is valid10

for a grey greenhouse substance (e.g. clouds or gas above the critical point) for which
δ∆λ∼1. It is also valid when brightness temperature in the interval ∆λ changes relatively
little within the convective layer.

Using Eqs. (2.1) and (2.2) we obtain the following expression of brightness temper-
ature Tb ≡ Tb(z) in terms of optical depth τ ≡ τ(z):15

Tb = Ts

(
1 + kτ
1 + kτs

)1/4

. (2.3)

Brightness temperature is maximum at the Earth’s surface and decreases monotoni-
cally with growing height z due to the monotonical decrease of τ with height z. The
lapse rate of brightness temperature Gb ≡ −dTb/dz also monotonically decreases
with height.20

We note that at any height z > 0 the local air temperature T is higher than the
brightness temperature Tb, T (z) > Tb(z). This follows from the direction of energy con-
version: the energy of non-radiative fluxes which, upon its dissipation, is characterized
by air temperature T , is converted to the energy of the excited levels of molecules of
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greenhouse substances with subsequent emission of thermal radiation characterized
by brightness temperature Tb. The relation T > Tb for z > 0 and the monotonical
smooth decline of both T and Tb with height mean that the lapse rate of air temper-
ature G ≡ −dT/dz is always lower than the lapse rate of brightness temperature
Gb ≡ −dTb/dz.5

2.2 Temperature lapse rate and the onset of convection

The gaseous atmosphere in the gravitational field of Earth conforms to the equation of
hydrostatic equilibrium, −dp/dz = MNg, and the equation of state for atmospheric air,
p = NRT , where p, N and T are pressure, molar concentration and temperature of air
at height z, M is air molar mass assumed to be independent of height z in accordance10

with observations, R = 8.3 J mole−1 K−1 is gas constant, g is acceleration of gravity.
The two equations can be combined in the following well-known form:

dp
dz

= −p
h

; h ≡ RT
Mg

. (2.4)

Relation (2.4) is valid for all gases with constant mass fraction, in particular, for non-
condensable greenhouse substances like CO2. Due to the observed constant molar15

mass of air, the ratio p/ps in Eq. (2.4) is, as is well-known, equal to the corresponding
ratio of partial pressures of such gases and to the ratio τ/τs, i.e. p/ps = τ/τs. Using
this equality together with Eqs. (2.3) and (2.4) we obtain:

Gb ≡ −
dTb
dz

= Gmaxαb, Gmax ≡
Ts

4hs
=

Mg
4R

,

αb =
kτ

(1 + kτ)3/4(1 + kτs)1/4
·
Ts
T
.

(2.5)

Here hs is the scale height of distribution of non-condensable gases in the atmosphere.20

The fundamental value of Gmax is a convenient scale for representing any temperature
lapse rates Gi in the form of dimensionless variables αi ≡ Gi/Gmax.
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Convective processes in the atmosphere set in when the lapse rate of air temper-
ature exceeds some critical value Γ (Chandrasekhar, 1957; Ramanathan and Coak-
ley, 1978; Weaver and Ramanathan, 1995). In the terrestrial atmosphere Gmax =
8.56 K km−1, while convection exists at the observed lapse rate Γ = 6.5 K km−1. This
value can be viewed as the critical lapse rate for the advent of convection in the terres-5

trial atmosphere (Ramanathan and Coakley, 1978). The condition Γ < Gmax implied by
Eq. (2.5) is therefore fulfilled in the terrestrial atmosphere.

With increasing amount of greenhouse substances in the atmosphere the lapse rate
of brightness temperature starts to grow, first of all at the surface, as far as Gbs > Gb(z)
for any z > 0. At some value of atmospheric optical thickness τs = τs min the lapse10

rate of brightness temperature at the surface may reach the critical value, Gbs = Γ, so
that it becomes possible for convection to originate. It happens if the lapse rate of air
temperature follows Gb closely enough. With increasing τs > τs min the convective layer
spreads upwards till yet larger and larger heights.

Once convection sets in, it works to keep the lapse rate of air temperature G close15

to the critical value of Γ (Ramanathan and Coakley, 1978). Thus, within the convective
layer z ≤ zc the lapse rate of air temperature is approximately constant, G ≈ Γ, and air
temperature obeys the observed relation:

T = Ts − Γz = Ts

(
1 − α

4
z
hs

)
, α ≡ Γ

Gmax
. (2.6)

For Earth Γ = 6.5 K km−1 and α = 0.77. At z > zc there is no convection, and Eq. (2.6),20

as well as any of its derivations, may not be used for description of air temperature.
Using Eqs. (2.4) and (2.6) we obtain the following well-known relation for z ≤ zc:

τ
τs

=
p
ps

=
(

1 − α
4

z
hs

)4/α

. (2.7)

Convection exists in that part of the atmosphere where air temperature lapse rate
G exceeds the critical value Γ, G > Γ. As far as G < Gb, the maximum height zc of25
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convective layer at a given value of optical thickness τs and surface temperature Ts
can be obtained from the equation Gb(zc) = Γ or, using Eqs. (2.5) and (2.6), from the
equation

αb = α. (2.8)

Variables τ and T in Eq. (2.8) are related to height z by Eqs. (2.7) and (2.6), respec-5

tively. Equation (2.8) determines the maximum height of the convective layer z = zc at
different values of atmospheric optical thickness τs, Fig. 1.

The threshold atmospheric optical thickness τs min is obtained from Eq. (2.8) by
putting z = 0, which means τ = τs and T = Ts:

τs min =
1
k

α
1 − α

. (2.9)
10

For Earth we obtain τs min = 4.5. The major non-condensable greenhouse substance
in the terrestrial atmosphere is CO2. Atmospheric optical thickness of CO2 in the 15 µm
spectral interval is estimated as kτs CO2

≈ 1.9 (Gorshkov and Makarieva, 2002), which
corresponds to τs CO2

= 2.5 at k = 3/4. Thus, the atmospheric CO2 concentration
on Earth is insufficient for switching convection on. As we show in the next section,15

convection on Earth is switched on by atmospheric water vapor. On Venus, on the
contrary, atmospheric CO2 concentration appears to be by far sufficient for convection
to originate, see below.

2.3 Height of convective layer at large values of τs

As one can see from Fig. 1, the height of convective layer zc reaches a finite limit at20

large values of atmospheric optical thickness. For τs → ∞ (τs � 1) one can use
Eqs. (2.5)–(2.7) to re-write Eq. (2.8) as(

p
ps

)1/4 Ts
T

= α. (2.10)
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Putting Eqs. (2.6) and (2.7) into Eq. (2.10) we obtain an exact finite value for the
height of the convective layer zc max at τs → ∞:

zc max

hs
= 4

1
α

(
1 − αα/(1−α)

)
= 3.03. (2.11)

For modern Earth we have Ts = 288 K, hs = 8.4 km and zc max = 25 km. Eq. (2.11)
describes the maximum height of the convective layer that could form in the terrestrial5

atmosphere with non-condensable greenhouse substances as the only absorbers of
thermal radiation.

Minimum values of air temperature Tc ≡ T (zc) and brightness temperature Tbc ≡
Tb(zc) at the top of the convective layer, zc = zcmax, at large values of atmospheric
optical thickness, τs � 1, are obtained by substituting Eq. (2.11) into Eq. (2.6), and10

Eq. (2.11) into Eqs. (2.7) and (2.3), respectively:

Tc
Ts

= αα/(1−α),
Tbc
Ts

= α1/(1−α);

Tc
Ts

= 0.42,
Tbc
Ts

= 0.32, α = 0.77.

(2.12)

The numeric values in the second line of Eq. (2.12) correspond to modern Earth.
As is clear from Eq. (2.12), brightness temperature Tbc at the top of the convec-

tive layer grows proportionally to surface temperature Ts. Upward flux F +
c of thermal15

radiation at the top of the convective layer increases therefore proportionally to T 4
s .

The dissipative power of non-radiative convective fluxes of energy and, consequently,
collisional excitation of the absorption bands of greenhouse substances, are limited
by the incoming flux of solar radiation Fin, which does not change with increasing τs
or Ts. (We note that in the non-stationary case the absorbed flux of solar radiation20

Fin is not equal to the outgoing flux of thermal radiation Fe, Fin 6= Fe, and also that
F +
s /Fin 6= 1 + kτs.) When the upward flux of thermal radiation at the surface is much

larger than the absorbed flux of solar radiation, F +
s = σT 4

s � Fin, convective processes
6709

are unable to significantly perturb the upward fluxes of thermal radiation and brightness
temperature within the convective layer as compared to the case of radiative equilib-
rium. With growing τs and Ts the radiative equilibrium spreads from the stratosphere to
the entire atmosphere, so that Eddington’s approximation becomes valid for the entire
atmosphere as well. Therefore, Eqs. (2.11) and (2.12) obtained with use of Eddington’s5

approximation yield at F +
s � Fin and τs � 1 the exact values of zc, Tbc and Tc.

On Venus the ratio of the upward flux of thermal radiation at the surface F +
s to the

outgoing flux of thermal radiation into space Fe = Fin equals F +
s /Fe = 98 (Mitchell,

1989). In accordance to Eddington’s approximation (2.1) this corresponds to τs =
4
3 (F +

s /Fe) = 131 � 1. Thus, Eqs. (2.11) and (2.12) can be applied to Venus with a high10

accuracy. Taking for Venus hs = 15.6 km, Gmax = 11.4 K km−1 (Ts = 730 K, MCO2
=

44 g mole−1, g = 8.6 m s−2 (Allen, 1973; Kasting, 1988; Mitchell, 1989)), the observed
air temperature lapse rate Γ ≈ 8 K km−1 (Goody and Yung, 1989), we obtain for Venus
α ≡ Γ/Gmax = 0.70. Putting these values into Eq. (2.11), we obtain the following
values for the height zc max of the convective layer on Venus, zc max = 50.4 km. This15

value agrees very well with the observed height of cloudiness on Venus (∼50 km),
where, according to observations (Goody and Yung, 1989), the air temperature lapse
rate starts to diminish becoming less than the critical convective value. From (2.12) we
calculate air temperature at zc max for Venus to be Tc = 318 K (44◦C).

We note that the height of convection zc is generally less than the height of the20

tropopause ztpp, zc < ztpp. The latter is usually defined as the point where the lapse
rate of air temperature approaches zero. As suggested by Fig. 1, the lapse rate of
brightness temperature and, consequently, lapse rate of air temperature may remain
substantial for z > zc, being nevertheless smaller than the critical value Γ responsible
for the presence of convection.25
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3 Convection in an atmosphere with condensable greenhouse substances

3.1 Height of convective layer

The dependence of saturated water vapor pressure pL on temperature is described
by Clausius-Clapeyron equation (everywhere below the low index L denotes variables
corresponding to water vapor):5

pL = psL exp
(
TL
Ts

−
TL
T

)
, TL ≡ Q

R
≈ 5300 K, (3.1)

where Q ≈ 44 KJ mole−1 is the latent heat of evaporation of water vapor, psL is partial
pressure of water vapor at the surface.

In an isothermal atmosphere water vapor can be saturated only immediately above
the water surface, z = 0. In the gravitational field the concentration of water vapor10

drops exponentially with height, so that at z > 0 water vapor becomes unsaturated.
If we demand that water vapor in the atmosphere is saturated and is in hydrostatic

equilibrium at all heights z, the corresponding lapse rate ΓL of air temperature is ob-
tained from the condition that both Eqs. (2.4) and (3.1) hold:

ΓL ≡ −dT
dz

=
Ts
HL

exp
(
− z
HL

)
≈

Ts
HL

,

HL ≡
RTL
gM

= 154 km.
(3.2)

15

Due to the large value of HL Eq. (3.1), for a relatively wide interval of surface tempera-
ture changes ΓL is practically constant (independent of z) in the entire troposphere.

If the lapse rate of air temperature G were smaller than ΓL, atmospheric water vapor
would be unsaturated at all heights z.

In the modern atmosphere of Earth we have20

G ≈ Γ = βs ΓL, βs =
αHL

4hs
= α

TL
4Ts

= 3.5. (3.3)
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As far as the observed lapse rate G ≈ Γ of air temperature is steeper than ΓL,
Γ > ΓL, the distribution of water vapor in the atmosphere differs from the hydrostatic
equilibrium distribution (2.4). Calculating dpL/dz with use of Eqs. (3.1) and (2.4) we
find for the convective layer z < zcL:

dpL

dz
= −

pL

hL
, hL =

h
β
, β ≡ α

TL
4T

≈ βs = 3.5. (3.4)
5

As is clear from Eq. (3.4), the modern distribution of water vapor in the atmosphere
is compressed by β ≈ 3.5 times as compared to distribution of air (Weaver and Ra-
manathan, 1995). The scale height of water vapor distribution in the modern atmo-
sphere equals hsL ≡ hs/βs ≈ 2.4 km, which agrees well with observations (Goody and
Yung, 1989; Weaver and Ramanathan, 1995). Compression of water vapor in the mod-10

ern atmosphere significantly violates hydrostatic equilibrium and brings about intensive
dynamic fluxes of hydrosphere evaporation, upward transport of evaporated water and
compensating downward fluxes of precipitation.

Assuming approximate constancy of β in Eq. (3.4) we obtain an approximate relation
similar to Eq. (2.7):15

τL
τsL

≈
pL

psL
≈
(

1 −
αL

4
z
hsL

)4/αL

=
(
p
ps

)βs

, z < zc, (3.5)

hsL ≡
hs

βs
, αL ≡ α

βs
.

Due to the large value of βs and the rapid drop of pressure with height, relation Eq. (3.5)
differs from Eq. (3.1) for the area of interest z ≤ hsL by magnitudes of the order of
αL/4 = Ts/TL∼0.05, i.e. by less than 5%.

Relation (3.5) for condensable greenhouse substances appear to be identical to the20

corresponding relations (2.4) for non-condensable greenhouse substances if one sub-
stitutes α and hs by αL and hsL, respectively, the latter being βs times lower than the for-
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mer. Similarly, the maximum value of brightness temperature lapse rate Gmax = Ts/4hs
(2.5) becomes for water vapor βs times larger:

GL max = Ts/4hsL = Gmaxβs, (3.6)

i.e. equal to 30 K km−1 for Earth.
The expression for maximum height of the convective layer determined by water va-5

por, zcL max, is obtained from Eq. (2.8) by a similar substitution α → αL, τ → τL and
τs → τsL, where αL = α/βs = 0.22, τL is determined by Eq. (3.5) and temperature T
is determined by Eq. (2.6). The onset of convection in the terrestrial atmosphere due
to the greenhouse effect of water vapor occurs at τsL min = 0.38, Fig. 2, which is more
than ten times smaller than τs min = 4.5 for non-condensable greenhouse substances10

like CO2, Fig. 1. The atmospheric optical thickness of water vapor in the terrestrial
atmosphere is estimated as kτsL ≈ 0.53 (Gorshkov and Makarieva, 2002), which ex-
ceeds the value of τsL min by almost twofold. This makes it possible to conclude that
convection in the terrestrial atmosphere is switched on and maintained by water va-
por. The idea that water vapor is more efficient with respect to switching on convection15

than non-condensable absorbers like CO2 due to the above discussed compression of
water vapor in the modern atmosphere, was put forward by Weaver and Ramanathan
(1995).

Note that in the intervals of τsL < τsL min corresponding to Γ > G > ΓL water va-
por is already not in hydrostatic equilibrium (i.e. there are fluxes of evaporation and20

precipitation), while atmospheric convection is still absent.
At large values of optical thickness τs � 1 Eqs. (2.11) and (2.12) retain their form for

water vapor if one substitutes hs → hsL = hs/βs and α → αL = α/βs:

zcL max = 4hsL
1
αL

(
1 − ααL/(1−αL)

L

)
≈

≈ 4
hs

βs
ln

βs

α
= 6.3

hs

βs
= 15 km.

(3.7)

6713

The values of air temperature TcL and brightness temperature TbcL at the top of
convective layer at z = zcL max are obtained from Eqs. (2.12) by substituting α for αL.
At Ts = 288 K and αL = 0.22 we have TcL = 188 K = −85◦C.

On Earth the atmospheric content of water vapor is strongly dependent on surface
temperature rising approximately twofold per each ten degrees of surface temperature5

increase, see Eq. (3.1). The maximum values of atmospheric optical thickness of water
vapor are therefore to be observed in the equatorial regions (Raval and Ramanathan,
1989). In accordance with Eq. (3.7), in these regions one also observes maximum
height of the convective layer of the order of 15 km and minimum air temperatures of
the order of −80◦C. In the polar regions where surface temperature and, consequently,10

atmospheric water vapor content, are much lower, one should expect to observe sig-
nificantly lower convective layer and higher temperatures at its top, which is indeed the
pattern observed.

3.2 Outgoing flux of thermal radiation into space

Clausius-Clapeyron equation (3.1) can be viewed as determining partial pressure of15

saturated water vapor at an arbitrary height z at an arbitrary moment of time t. It is
easy to see that Eq. (3.1) conforms to the following invariance rule:

psL exp
(
TL
Ts

)
= psL0 exp

(
TL
Ts0

)
, (3.8)

where Ts0 and psL0 are the values of surface temperature and partial pressure at the
initial moment of time t = 0, which can be taken corresponding to the state of ther-20

mal equilibrium Fe = Fin. It is easy to see from Eq. (3.8) that optical thickness of
atmospheric water vapor τsL, as well as partial pressure of water vapor at the Earth’s
surface psL, see Eq. (3.5), increase exponentially with growing increment of surface
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temperature θ ≡ Ts − Ts0 (Ts0 = 288 K):

psL=psL0exp
(
θ
θs

)
, θs≡

Ts0Ts
TL

, θs0≡
T 2
s0

TL
=18 K. (3.9)

This means that at τsL � 1 the ratio of the outgoing flux of thermal radiation FLe to
the upward flux of thermal radiation at the surface F +

sL within the absorption interval of
water vapor drops exponentially with growing θ:5

FeL
F +
sL

∝ 1
τsL

=
1

τsL0
exp

(
− θ
θs

)
. (3.10)

In a number of radiative-convective studies where semigrey atmospheres with con-
densable greenhouse substances were considered, the outgoing flux of thermal ra-
diation into space at high surface temperatures was suggested to remain practically
constant (Komabayasi, 1967; Ingersoll, 1969; Kasting, 1988; Goody and Yung, 1989;10

Nakajima et al., 1992; Pujol and North, 2002). The major assumption responsible
for this result is that the entire atmosphere, including the upper radiative layer, is in
hydrostatic equilibrium and saturated with respect to water vapor.

The constancy of FLe follows immediately from this assumption. Indeed, in the case
of hydrostatic equilibrium the condition τL = 1 (upper radiative layer, where the out-15

going flux is formed) unambiguously determines partial pressure of water vapor at
this height, which appears to be independent of surface temperature and atmospheric
optical thickness, see Eq. (2.4). On the other hand, as far as partial pressure of satu-
rated water vapor is unambiguously related to ambient air temperature in accordance
with Clausius-Clapeyron equation (3.1), the temperature T1 at the upper radiative layer20

appears independent of surface temperature either. In the case of constant T1 (and
assuming local thermodynamic equilibrium), the outgoing thermal radiation into space
does not change with growing surface temperature and atmospheric optical thickness.

However, height of convective layer being finite, optical depth at the top of the convec-
tive layer τc increases with growing τs. At some value of the latter the upper radiating25
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layer of the atmosphere τ∼1 goes outside the convective layer. There the lapse rate
of air temperature at τ∼1 drops radically and atmospheric water vapor becomes un-
saturated. The dependence between its partial pressure and ambient air temperature,
prescribed by Clausius-Clapeyron equation in the case of saturation, vanishes.

The fact that the height of convective layer at low latitudes in the modern Earth’s5

climate is close to its maximum value (3.7) testifies that the upper radiative layer cor-
responding to certain absorption lines of the water vapor absorption interval is located
above the convective layer. This suggests that the surface temperatures at which the
exponential drop of outgoing radiation is to be observed are not drastically different
from those at modern Earth.10

4 Conclusions

The main result of this paper is that, in contrast to the results obtained in several
previous studies (Komabayasi, 1967; Ingersoll, 1969; Kasting, 1988; Goody and Yung,
1989; Nakajima et al., 1992; Rennó, 1997; Pujol and North, 2002), on a planet with
an infinite liquid hydrosphere the outgoing flux of thermal radiation into space does not15

reach a finite plateau with growing surface temperature but diminishes exponentially.
To arrive to this result, we showed that the height of convective layer in an atmo-

sphere with condensable and non-condensable absorbers is finite (in terms of atmo-
spheric scale height hs) and independent of optical thickness of the atmosphere τs
at large values of the latter. As far as the dissipative power of the dynamic convec-20

tive processes is limited by the absorbed solar radiation, the obtained result means
that the contribution of convective processes to formation of the outgoing flux of ther-
mal radiation into space tends to zero with increasing atmospheric optical thickness
inversely proportionally to the latter. The radiative equilibrium heat transfer described
by Eddington approximation becomes the dominant form of heat transfer in the entire25

atmosphere including the troposphere.
We obtained the exact numerical value of the height of convective layer at the con-
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dition of large values of optical thickness τs, which applies to Venus and the equatorial
region of Earth (for some part of thermal spectrum). We also showed that at large
values of atmospheric optical thickness water vapor at the upper radiative layer will be
unsaturated.

The assumption of saturation of water vapor in the entire atmosphere, includ-5

ing upper radiative layer, which was used in several radiative-convective studies
(Komabayasi, 1967; Ingersoll, 1969; Kasting, 1988; Goody and Yung, 1989; Naka-
jima et al., 1992; Pujol and North, 2002), may not be used therefore for calculation of
the outgoing flux of thermal radiation into space.

In the presence of an infinite liquid hydrosphere the outgoing thermal radiation into10

space should decrease exponentially with growing surface temperature. This is a con-
sequence of an exponential growth with increasing surface temperature of the amount
of water in the atmosphere, including cloudiness absorbing thermal radiation over en-
tire thermal spectrum. We conclude that the account of convective processes does not
alter this basic physical mechanism of climate change on a planet with liquid hydro-15

sphere.
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Fig. 1. Lapse rate of brightness temperature Gb versus height z for different values of at-
mospheric optical thickness τs of non-condensable greenhouse substances, see Eqs. (2.5)
and (2.6). The corresponding values of τs are shown below each curve; hs ≡ RTs/Mg. The
upper dashed line denotes maximum lapse rate Gmax = Mg/4R, the lower dashed line de-
notes the observed modern lapse rate of air temperature within the convective layer on Earth,
Γ = 0.77 Gmax = 6.5 K km−1. The height zc of the convective layer for different values of τs is
determined by the points of intersection (empty circles) of the curves Gb(z) with the straight line
Γ = 0.77 Gmax, see Eq. (2.8). The value of zcmax = 3.03 hs (shown by the vertical dash-dotted
line), see Eq. (2.11), corresponds to the maximum height of the convective layer observed at
τ � 1. As far as Eq. (2.6) is valid at z ≤ zc, parts of curves Gb(z) at z > zc are denoted by
dots. The onset of convection in the atmosphere occurs at τs = τsmin = 4.5, for which zc = 0.
This figure is invariant with respect to changes of surface temperature Ts.
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Fig. 2. Lapse rate of brightness temperature GbL versus height z for different values of at-
mospheric optical thickness τsL of water vapor, see Eq. (3.7). The corresponding values of
τsL are shown below each curve; scale height hsL = 2.4 km. The upper dashed line de-
notes maximum lapse rate GL max = Gmaxβ = 30 K km−1, β = 3.5; the lower dashed line de-
notes the observed modern lapse rate of air temperature within the convective layer on Earth,
Γ = αLGL max = 6.5 K km−1, αL = 0.22. Height zcL of the convective layer for different val-
ues of τsL is determined by the points of intersection of the curves GbL(z) with the straight line
Γ = αLGL max (denoted as empty circles). The value of zcL max = 6.3hsL (shown by the vertical
dash-dotted line), see Eq. (3.7), corresponds to the maximum height of the convective layer ob-
served at τsL � 1 and Ts = 288 K. As far as Eq. (2.6) is valid within the convective layer, parts
of curves GbL(z) at z > zcL are denoted by dots. The onset of convection in the atmosphere
occurs at τsL = τsL min = 0.38, for which zcL = 0.
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