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Abstract. Phase transitions of atmospheric water play a
ubiquitous role in the Earth’s climate system, but their direct
impact on atmospheric dynamics has escaped wide attention.
Here we examine and advance a theory as to how conden-
sation influences atmospheric pressure through the mass re-
moval of water from the gas phase with a simultaneous ac-
count of the latent heat release. Building from fundamental
physical principles we show that condensation is associated
with a decline in air pressure in the lower atmosphere. This
decline occurs up to a certain height, which ranges from 3
to 4 km for surface temperatures from 10 to 30◦C. We then
estimate the horizontal pressure differences associated with
water vapor condensation and find that these are comparable
in magnitude with the pressure differences driving observed
circulation patterns. The water vapor delivered to the atmo-
sphere via evaporation represents a store of potential energy
available to accelerate air and thus drive winds. Our estimates
suggest that the global mean power at which this potential
energy is released by condensation is around one per cent of
the global solar power – this is similar to the known station-
ary dissipative power of general atmospheric circulation. We
conclude that condensation and evaporation merit attention
as major, if previously overlooked, factors in driving atmo-
spheric dynamics.

1 Introduction

Phase transitions of water are among the major physical pro-
cesses that shape the Earth’s climate. But such processes
have not been well characterized. This shortfall is recognized
both as a challenge and a prospect for advancing our un-
derstanding of atmospheric circulation (e.g.,Lorenz, 1983;
Schneider, 2006). In A History of Prevailing Ideas about the
General Circulation of the AtmosphereLorenz(1983) wrote:

“We may therefore pause and ask ourselves
whether this step will be completed in the man-
ner of the last three. Will the next decade see new
observational data that will disprove our present
ideas? It would be difficult to show that this can-
not happen.

Our current knowledge of the role of the various
phases of water in the atmosphere is somewhat in-
complete: eventually it must encompass both ther-
modynamic and radiational effects. We do not fully
understand the interconnections between the trop-
ics, which contain the bulk of water, and the re-
maining latitudes . . . Perhaps near the end of the
20th century we shall suddenly discover that we
are beginning the fifth step.”

Deluc (1812, p. 176) mentioned that conversion of water
vapor to rain creates a kind of “airfree” space that may cause
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wind gusts.Lorenz(1967, Eq. 86), as well as several other
authors after him (Trenberth et al., 1987; Trenberth, 1991;
Gu and Qian, 1991; Ooyama, 2001; Schubert et al., 2001;
Wacker and Herbert, 2003; Wacker et al., 2006), recognized
that local pressure is reduced by precipitation and increased
by evaporation.Qiu et al. (1993) noted that “the mass de-
pletion due to precipitation tends to reduce surface pressure,
which may in turn enhance the low-level moisture conver-
gence and give a positive feedback to precipitation”.Van den
Dool and Saha(1993) labeled the effect as a physically dis-
tinct “water vapor forcing”.Lackmann and Yablonsky(2004)
investigated the precipitation mass sink for the case of Hur-
ricane Lili (2002) and made an important observation that
“the amount of atmospheric mass removed via precipitation
exceeded that needed to explain the model sea level pressure
decrease”.

Although the pressure changes associated with evapora-
tion and condensation have received some attention, the in-
vestigations have been limited: the effects remain poorly
characterized in both theory and observations. Previous in-
vestigations focused on temporal pressure changes not spa-
tial gradients. Even some very basic relationships remain
subject to confusion. For example, there is doubt as to
whether condensation leads to reduced or toincreasedatmo-
spheric pressure (Pöschl, 2009, p. S12436). Opining that the
status of the issue in the meteorological literature is unclear,
Haynes(2009) suggested that to justify the claim of pres-
sure reduction one would need to show that “the standard
approaches (e.g., set out in textbooks such as “Thermody-
namics of Atmospheres and Oceans” byCurry and Webster,
1999) imply a drop in pressure associated with condensa-
tion”.

Here we aim to clarify and describe, building from basic
and established physical principles, the pressure changes as-
sociated with condensation. We will argue that atmospheric
water vapor represents a store of potential energy that be-
comes available to accelerate air as the vapor condenses.
Evaporation, driven by the sun, continuously replenishes the
store of this energy in the atmosphere.

The paper is structured as follows. In Sect. 2 we analyze
the process of adiabatic condensation to show that it is al-
ways accompanied by a local decrease of air pressure. In
Sect. 3 we evaluate the effects of water mass removal and
lapse rate change upon condensation in a vertical air col-
umn in approximate hydrostatic equilibrium. In Sect. 4 we
estimate the horizontal pressure gradients induced by water
vapor condensation to show that these are sufficient enough
to drive the major circulation patterns on Earth (Sect. 4.1).
We examine why the key relationships have remained un-
known until recently (Sects. 4.2 and 4.3). We evaluate the
mean global power available from condensation to drive the
general atmospheric circulation (Sect. 4.4). Finally, we dis-
cuss the interplay between evaporation and condensation and
the essentially different implications of their physics for at-
mospheric dynamics (Sect. 4.5). In the concluding section

we discuss the importance of condensation as compared to
differential heating as the major driver of atmospheric cir-
culation. Our theoretical investigations strongly suggest that
the phase transitions of water vapor play a far greater role in
driving atmospheric dynamics than is currently recognized.

2 Condensation in a local air volume

2.1 Adiabatic condensation

We will first show that adiabatic condensation is always ac-
companied by a decrease of air pressure in the local volume
where it occurs. The first law of thermodynamics for moist
air saturated with water vapor reads (e.g.,Gill , 1982)

dQ = cVdT + pdV + Ldγ, (1)

γ ≡
pv

p
� 1,

dγ

γ
=

dpv

pv
−

dp

p
. (2)

Here pv is partial pressure of saturated water vapor,p is
air pressure,T is absolute temperature,Q (J mol−1) is mo-
lar heat,V (m3 mol−1) is molar volume,L ≈ 45 kJ mol−1

is the molar heat of vaporization,cV =
5
2R is molar heat

capacity of air at constant volume (J mol−1 K−1), R =

8.3 J mol−1 K−1 is the universal gas constant. The small
value ofγ < 0.1 under terrestrial conditions allows us to ne-
glect the influence made by the heat capacity of liquid water
in Eq. (1).

The partial pressure of saturated water vapor obeys the
Clausius-Clapeyron equation:

dpv

pv
= ξ

dT

T
, ξ ≡

L

RT
, (3)

pv(T ) = pv0exp(ξ0 − ξ), (4)

wherepv0 and ξ0 correspond to some reference tempera-
tureT0. Below we useT0 = 303 K andpv0 = 42 hPa (Bolton,
1980) and neglect the dependence ofL on temperature.

We will also use the ideal gas law as the equation of state
for atmospheric air:

pV = RT, (5)

dp

p
+

dV

V
=

dT

T
. (6)

Using Eq. (6) the first two terms in Eq. (1) can be written
in the following form

cVdT + pdV =
RT

µ

(
dT

T
− µ

dp

p

)
,

(7)
µ ≡

R

cp

=
2

7
= 0.29, cp = cV + R.
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Writing dγ in Eq. (1) with use of Eqs. (2) and (3) as

dγ

γ
= ξ

dT

T
−

dp

p
(8)

and using the definition ofξ (Eq.3) we arrive at the following
form for the first law of thermodynamics (Eq.1):

dQ =
RT

µ

{
dT

T
(1+ µγ ξ2) − µ

dp

p
(1+ γ ξ)

}
. (9)

In adiabatic processes dQ = 0, and the expression in
braces in Eq. (9) turns to zero, which implies:

dT

T
=

dp

p
ϕ(γ,ξ), ϕ(γ,ξ) ≡ µ

1+ γ ξ

1+ µγ ξ2
≡ ϕ. (10)

Note thatµ, γ andξ are all dimensionless;γ andξ are vari-
ables andµ is a constant,ϕ(0,0) = µ. This is a general de-
pendence of temperature on pressure in an adiabatic atmo-
spheric process that involves phase transitions of water vapor
(evaporation or condensation), i.e. change ofγ . At the same
time γ itself is a function of temperature as determined by
Eq. (8):

dγ

γ
= ξ

dT

T
−

dp

p
=

dT

T

ξϕ − 1

ϕ
= (ξϕ − 1)

dp

p
. (11)

One can see from Eqs. (10) and (11) that the adiabatic phase
transitions of water vapor are fully described by the relative
change of either pressure dp/p or temperature dT/T . For the
temperature range relevant for Earth we haveξ≡L/RT ≈18
so that

ξµ − 1 ≈ 4.3. (12)

Noting thatµ, γ , ξ are all positive, from Eqs. (10), (11)
and (12) we obtain

ξϕ − 1 = ξµ
1+ γ ξ

1+ µγ ξ2
− 1 =

ξµ − 1

1+ µγ ξ2
> 0. (13)

Condensation of water vapor corresponds to a decrease of
γ , dγ < 0. It follows unambiguously from Eqs. (11) and (13)
that if dγ is negative, then dp and dT are negative too. This
proves that water vapor condensation in any adiabatic pro-
cess is necessarily accompanied by reduced air pressure.

2.2 Adiabatic condensation cannot occur at constant
volume

Our previous result refutes the proposition that adiabatic con-
densation can lead to a pressure rise due to the release of
latent heat (Pöschl, 2009, p. S12436). Next, we show that
while such a pressure rise was implied by calculations as-
sumingadiabatic condensation at constant volume, in fact
such a process is prohibited by the laws of thermodynamics
and thus cannot occur.

Using Eqs. (6), (10) and (8) we can express the relative
change of molar volume dV/V in terms of dγ /γ :

dV

V
= −

1− ϕ

ϕξ − 1

dγ

γ
. (14)

Putting dV = 0 in Eq. (14) we obtain

(1− ϕ)dγ

(ξϕ − 1)γ
= 0. (15)

The denominator in Eq. (15) is greater than zero, see
Eqs. (12) and (13). In the numerator we note from the def-

inition of ϕ (Eq. 10) that 1−ϕ=
2γ

7+2γ ξ2

[
5

2γ
+ξ(ξ−1)

]
. The

expression in square brackets lacks real roots:

5

2γ
+ ξ2

− ξ = 0, ξ =
1

2

(
1± i

√
10− γ

γ

)
, γ ≤ 1. (16)

In consequence, Eq. (15) has a single solution dγ=0. This
proves that condensation cannot occur adiabatically at con-
stant volume.

2.3 Non-adiabatic condensation

To conclude this section, we show that for any process where
entropy increases, dS=dQ/T >0, water vapor condensation
(dγ<0) is accompanied by drop of air pressure (i.e., dp<0).
We write the first law of thermodynamics Eqs. (9) and (11)
as

dS

R

µ

1+ µγ ξ2
=

dT

T
− ϕ

dp

p
,

dT

T
=

1

ξ

(
dγ

γ
+

dp

p

)
. (17)

Excluding dT/T from Eq. (17) we obtain

dp

p
(ξϕ − 1) =

dγ

γ
− ξ

µ

1+ µγ ξ

dS

R
. (18)

The term in round brackets in Eq. (18) is positive, see
Eq. (13), the multiplier at dS is also positive. Therefore, when
condensation occurs, i.e., when dγ /γ<0, and dS>0, the left-
hand side of Eq. (18) is negative. This means that dp/p<0,
i.e., air pressure decreases.

Condensation can be accompanied by a pressure increase
only if dS<0. This requires that work is performed on the gas
such as occurs if it is isothermally compressed. (We note too,
that if pure saturated water vapor is isothermally compressed
condensation occurs, but the Clausius-Clapeyron equation
(Eq.3) shows that the vapor pressure remains unchanged be-
ing purely a function of temperature.)

3 Adiabatic condensation in the gravitational field

3.1 Difference in the effects of mass removal and
temperature change on gas pressure in
hydrostatic equilibrium

We have shown that adiabatic condensation in any local vol-
ume is always accompanied by a drop of air pressure. We
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will now explore the consequences of condensation for the
vertical air column.

Most circulation patterns on Earth are much wider than
they are high, with the ratio height/length being in the order
of 10−2 for hurricanes and down to 10−3 and below in larger
regional circulations. As a consequence of mass balance, ver-
tical velocity is smaller than horizontal velocities by a similar
ratio. Accordingly, the local pressure imbalances and result-
ing atmospheric accelerations are much smaller in the verti-
cal orientation than in the horizontal plane, the result being
an atmosphere in approximate hydrostatic equilibrium (Gill ,
1982). Air pressure then conforms to the equation

−
dp

dz
= ρg, p(0) ≡ ps = g

∞∫
0

ρ(z)dz. (19)

Applying the ideal gas equation of state (Eq.5) we have from
Eq. (19)

dp

dz
= −

p

h
, h ≡

RT

Mg
. (20)

This solves as

p(z) = psexp

−

z∫
0

dz′

h(z′)

 . (21)

HereM is air molar mass (kg mol−1), which, as well as tem-
peratureT (z), in the general case also depends onz.

The value ofps (Eq. 19), air pressure at the surface, ap-
pears as the constant of integration after Eq. (19) is integrated
over z. It is equal to the weight of air molecules in the at-
mospheric column. It is important to bear in mind thatps
does not depend on temperature, but only on the amount of
gas molecules in the column. It follows from this observa-
tion that any reduction of gas content in the column reduces
surface pressure.

Latent heat released when water condenses means that
more energy has to be removed from a given volume of satu-
rated air for a similar decline in temperature when compared
to dry air. This is why the moist adiabatic lapse rate is smaller
than the dry adiabatic lapse rate. Accordingly, given one and
the same surface temperatureTs in a column with rising air,
the temperature at some distance above the surface will be
on average higher in a column of moist saturated air than in
a dry one.

However, this does not mean that at a given height air pres-
sure in the warmer column is greater than air pressure in the
colder column (cf.Meesters et al., 2009; Makarieva and Gor-
shkov, 2009c), because air pressurep(z) (Eq. 21) depends
on two parameters, temperatureT (z) and surface air pres-
sure (i.e., the total amount of air in the column). If the total
amount of air in the warmer column is smaller than in the
colder column, air pressure in the surface layer will be lower
in the warmer column despite its higher temperature.

In the following we estimate the cumulative effect of gas
content and lapse rate changes upon condensation.

3.2 Moist adiabatic temperature profile

Relative water vapor content (Eq.2) and temperatureT de-
pend on heightz. From Eqs. (10), (11) and (20) we have

−
dT

dz
≡ 0 = ϕ

T

h
, ϕ ≡ µ

1+ γ ξ

1+ γµξ2
, (22)

−
1

γ

dγ

dz
=

ξϕ − 1

h
≡

ξµ − 1

1+ µγ ξ2

1

h
. (23)

Equation (22) represents the well-known formula for a moist
adiabatic gradient as given inGlickman (2000) for small
γ < 0.1. At γ = 0 we haveϕ(γ,ξ) = µ and0d = Mdg/cp =

9.8 K km−1, which is the dry adiabatic lapse rate that is in-
dependent of heightz, Md = 29 g mol−1. For moist saturated
air the change of temperatureT and relative partial pressure
γ of water vapor with height is determined by the system of
differential equations (Eqs.22, 23).

Differentiating both parts of the Clapeyron-Clausius equa-
tion (Eq.3) overz we have, see Eq. (22):

dpv

dz
= −

pv

hv
, hv ≡

RT 2

L0
=

T

ξ0
=

h

ξϕ
,

(24)

pv(z) = pvsexp

−

z∫
0

dz′

hv

 , pvs ≡ pv(0).

The value ofhv represents a fundamental scale height for the
vertical distribution of saturated water vapor. AtTs = 300 K
this heighthv is approximately 4.5 km.

Differentiating both parts of Eq. (2) over z with use of
Eqs. (20) and (24) and noticing thathv=h/(ξϕ) we have

−
1

γ

dγ

dz
=

1

pv

dpv

dz
−

1

p

dp

dz
=

1

hv
−

1

h
≡

1

hγ

,

hγ ≡
hvh

h − hv
. (25)

This equation is equivalent to Eq. (23) when Eqs. (22)
and (24) are taken into account. Heighthγ represents the
vertical scale of the condensation process. Height scaleshv
(Eq. 24) andhγ (Eq. 25) depend onϕ(γ,ξ) (Eq. 22) and,
consequently, onγ . At Ts = 300 K height hγ ≈ 9 km, in
close proximity to the water vapor scale height described by
Mapes(2001).

3.3 Pressure profiles in moist versus dry air columns

We start by considering two static vertically isothermal at-
mospheric columns of unit area, A and B, with temperature
T (z) = Ts independent of height. Column A contains moist
air with water vapor saturated at the surface, column B con-
tains dry air only. Surface temperatures and surface pressures
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Fig. 1. (a)Scale height of saturated water vaporhv(z) (Eq. 24), hydrostatic scale height of water vaporhn(z) (Eq. 26), and scale height of
moist airh(z) (Eq.20) in the column with moist adiabatic lapse rate (Eq.22) for three values of surface temperatureTs; (b) condensation-
induced drop of air pressure at the surface (Eq.27) as dependent on surface temperatureTs; (c) pressure difference versus altitudez between
atmospheric columns A and B with moist and dry adiabatic lapse rates, Eqs. (30) and (31), respectively, for three values of surface temperature
Ts. Heightzc at whichpA(zc)−pB(zc)=0 is 2.9, 3.4 and 4.1 km for 283, 293 and 303 K, respectively. Due to condensation, at altitudes below
zc the air pressure is lower in column A despite it being warmer than column B.

in the two columns are equal. In static air Eq. (19) is exact
and applies to each component of the gas mixture as well
as to the mixture as a whole. At equal surface pressures, the
total air mass and air weight are therefore the same in both
columns. Water vapor in column A is saturated at the surface
(i.e., atz = 0) but non-saturated above it (atz > 0). The sat-
urated partial pressure of water vapor at the surfacepv(Ts)

(Eq. 4) is determined by surface temperature and, as it is in
hydrostatic equilibrium, equals the weight of water vapor in
the static column.

We now introduce a non-zero lapse rate to both columns:
the moist adiabatic0 (Eq.22) to column A and the dry adia-
batic0d in column B. (Now the columns cannot be static: the
adiabatic lapse rates are maintained by the adiabatically as-
cending air.) Due to the decrease of temperature with height,
some water vapor in column A undergoes condensation. Wa-
ter vapor becomes saturated everywhere in the column (i.e.,
at z≥0), with pressurepv(z) following Eq. (24) and density
ρv=pvMv/(RT )≡pv/(ghn) following

ρv(z) = ρv(Ts)
hns

hn(z)
exp

−

z∫
0

dz′

hv(z′)

 ,

(26)
ρv(Ts) ≡

pv(Ts)

ghn(Ts)
, hn ≡

RT (z)

Mvg
, T (z) = Ts− 0z.

Herehn(z) is the scale height of the hydrostatic distribution
of water vapor in the isothermal atmosphere withT (z)=Ts.

The change in pressureδps in column A due to water va-
por condensation is equal to the difference between the initial
weight of water vaporpv(Ts) and the weight of saturated wa-
ter vapor:

δps = pv(Ts) − g

∞∫
0

ρv(z)dz ≤ pv(Ts) − ρv(Ts)ghv(Ts)

= pv(Ts)

(
1−

hvs

hns

)
= pv(Ts)

(
1−

MvgTs

L0s

)
. (27)

The inequality in Eq. (27) represents a conservative estimate
of δps due to the approximationhv(z)=hv(Ts) made while
integratingρv(z) (26). As far ashv(z) declines with height
more rapidly thanhn(z), Fig. 1a, the exact magnitude of
this integral is smaller, while the value ofδps is larger. The
physical meaning of estimate (Eq.27) consists in the fact
that the drop of temperature with height compresses the wa-
ter vapor distributionhns/hvs-fold compared to the hydro-
static distribution (Makarieva and Gorshkov, 2007, 2009a;
Gorshkov et al., 2012).

The value ofδps (Eq. 27) was calculated as the differ-
ence between the weight per unit surface area of vapor in
the isothermal hydrostatic column and the weight of water
vapor that condensed when a moist adiabatic lapse rate was
applied. This derivation can also be understood in terms of
the variable conventionally called theadiabatic liquid water
content(e.g.,Curry and Webster, 1999, Eq. 6.41). We can
represent the total mixing ratio of moisture (by mass) asqt ≡

qv+ql = (ρv+ρl)/ρ, whereρv is the mass of vapor andρl is
the mass of liquid water per unit air volume;qt�1. The total
adiabatic liquid water content in the column equals the inte-
gral ofqlρ overz at constantqt, qlρ = qtρ −qvρ = qtρ −ρv.
The value ofδps (Eq. 27) is equal to this integral (mass per
unit area) multiplied by the gravitational acceleration (giving
weight per unit area):

www.atmos-chem-phys.net/13/1039/2013/ Atmos. Chem. Phys., 13, 1039–1056, 2013
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δps = g

∞∫
0

qlρdz = g

 ∞∫
0

qtρdz −

∞∫
0

ρvdz

 . (28)

The first integral in braces gives the mass of vapor in the
considered atmospheric column if water vapor were a non-
condensable gas,qv=qt=const. This term is analagous to the
first term,pv(Ts), in the right-hand side of Eq. (27), where
a static isothermal column was considered. The second term
is identical to the second term,g

∫
∞

0 ρvdz, in Eq. (27).
Using the definition ofhv(Ts) (Eq. 24), hn(Ts) (Eq. 26)

and recalling thatMv/Md=0.62 and pv(Ts)=γsps, see
Eq. (4), we obtain the following expression for theδps es-
timate (Eq.27), Fig. 1b:

δps

ps
≈ γs

(
1− 0.62

1+ γsµξ2
s

µξs+ γsµξ2
s

)
. (29)

Note thatδps/ps is proportional toγs and increases exponen-
tially with the rise of temperature.

After an approximate hydrostatic equilibrium is estab-
lished, the vertical pressure profiles for columns A and B
become, cf. Eq. (21):

pA(z)=ps

(
1−

δps

ps

)
exp

−

z∫
0

dz′

hA(z′)

 , hA ≡
RT

Mg
; (30)

pB(z) = psexp

−

z∫
0

dz′

hB(z′)

 , hB ≡
RTd

Mdg
. (31)

Here M(z)=Md(1−γ )+Mvγ ; γ≡pv(z)/pA(z) and T (z)

obey Eqs. (22) and (23), Td(z)≡Ts−0dz.
In Fig. 1c the differencepA(z)−pB(z) is plotted for three

surface temperatures,Ts=10◦C, 20◦C and 30◦C. In all three
cases condensation has resulted in a lower air pressure in col-
umn A compared to column B everywhere belowzc≈2.9, 3.4
and 4.1 km, respectively. It is only above that height that the
difference in lapse rates makes pressure in the moist column
higher than in the dry column.

3.4 Comparing forces due to condensation and
buoyancy

Fig. 1c describes the relative contributions of latent heat re-
lease and the condensation vapor sink to thehorizontalpres-
sure differences. This result can also be illustrated by com-
paring thevertical forces associated with phase transitions of
water vapor.

The buoyant force acting per unit moist air volume can be
written as

fB = ρpg

(
ρ

ρp
− 1

)
=

ρpg

(
T (z)

Td(z)

1

1− (Mv/Md)γ (z)
− 1

)
.

Hereρp is the density of the air moist air parcel that ascends
in the environment with densityρ. (WhenfB is taken per unit
mass by dividing by densityρp and integrated overz, one
obtains theconvective available potential energy(CAPE)
(Glickman, 2000), which represents work performed by the
buoyant force on therising air parcel. As work of the buoy-
ant force on the air parcel that isdescendingdry adiabatically
is usually negative, total energy available for a buoyancy-
induced circulation can be close to zero even at large positive
CAPE (Gorshkov et al., 2012).)

Figure 2a shows the buoyant force acting on an air vol-
ume from column A that rises moist adiabatically in the
dry adiabatic environment of column B:ρp = pB(z)M/RT ,
ρ = pB(z)Md/RTd. HerepB is given by Eq. (31), Td fol-
lows the dry adiabatic profileTd(z) = Ts− 0dz, where0d =

9.8 K km−1, while temperatureT (z) and molar massM(z) =

Md[1− (Mv/Md)γ (z)] of the rising air satisfy Eqs. (22)–
(23). The positive value of the buoyant force at the surface
is due to the lower molar density of the moist versus dry air.

The same figure shows the condensation pressure gradi-
ent force that acts in the column where moist saturated air
ascends adiabatically:

fC =
pv

p

∂p

∂z
−

∂pv

∂z
= −p

∂γ

∂z
.

Herep andγ conform to Eqs. (22)–(23).
As Fig. 2a shows, the two forces have different spatial lo-

calization. The condensation force has a maximum in the
lower atmosphere where the amount of vapor is maximized.
The buoyant force grows with height following the accumu-
lating difference between the moist adiabatic and dry adia-
batic temperatures. AtTs = 300 km atz = 8 km the differ-
ence theoretically amounts to over 50 K.

The buoyant force estimated in Fig. 2 represents a the-
oretical upper limit that assumes no heat transfer between
the ascending air and its environment. Maximum tempera-
ture differences observed in the horizontal direction in real
weather systems are typically much smaller than 50 K at
any height. Indeed, even in the warm-core tropical storms
– i.e., in intense precipitation events – the horizontal temper-
ature difference between the core and the external environ-
ment rarely exceeds a few degrees Kelvin (e.g.,Knaff et al.,
2000). In Fig. 2b the same forces are plotted, but for the
buoyant force estimated for an environment having a mean
tropospheric lapse rate of 6.5 K km−1 (rather than the dry
adiabatic lapse rate 9.8 K km−1). As Fig. 2b shows, the
magnitude of the buoyant force drops rapidly with dimin-
ishing differences in temperature. Convective available po-
tential energy associated with the buoyant force shown in
Fig. 2a is

∫ 8km
0 (fB/ρp)dz = 8.5× 103 J kg−1. This figure is

several times higher than the typical values calculated from
the lapse rate soundings of the atmospheric column below
12 km height in the most intense convection events like
thunderstorms and tornadoes (e.g.,Thompson et al., 2003;
Kis and Straka, 2010). Furthermore, in a recent comparison
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Fig. 2. Condensation forcefC (solid curves) and buoyant forcefB (dashed) acting at heightz on a moist air volume ascending in an
environment with dry adiabatic lapse rate 9.8 K km−1 (a) and mean tropospheric lapse rate 6.5 K km−1 (b) for different values of surface
temperatureTs.

of nocturnal and diurnal tornadoes (Kis and Straka, 2010) it
was found that significant tornadoes can form at both large
and very small CAPE values, pointing to the importance of
different mechanisms for the generation of intense circula-
tion systems.

The key message from Fig. 2 is that the condensation
force remains comparable in magnitude to the buoyant force
even when the latter is allowed (for the sake of argument) to
take unrealistically high values. Furthermore the condensa-
tion force dominates in the lower atmosphere with the buoy-
ant force more pronounced only in the upper atmosphere.
We note that both the buoyant and condensation forces are
vertically directed. But we emphasise that their action in the
atmosphere is manifested in the formation of horizontal pres-
sure gradients. This follows from the independent stipulation
that the atmosphere is vertically in approximate hydrostatic
equilibrium. In Sect. 4 we derive the horizontal pressure gra-
dients associated with the condensation force.

4 Relevance of the condensation-induced pressure
changes for atmospheric processes

4.1 Horizontal pressure gradients associated with vapor
condensation

We have shown that condensation of water vapor produces
a drop of air pressure in the lower atmosphere up to an al-
titude of a few kilometers, Fig. 1c, in a moist saturated hy-
drostatically adjusted column. In the dynamic atmospheric
context the vapor condenses and latent heat is released dur-
ing the ascent of moist air. The vertical displacement of air
is inevitably accompanied by its horizontal displacement.
This translates much of the condensation-induced pressure

difference to a horizontal pressure gradient. Indeed, as the
upwelling air loses its water vapor, the surface pressure di-
minishes via hydrostatic adjustment producing a surface gra-
dient of total air pressure between the areas of ascent and
descent. The resulting horizontal pressure gradient is propor-
tional to the the ratio of vertical to horizontal velocityw/u

(Makarieva and Gorshkov, 2009b).
We will illustrate this point regarding the magnitude of the

resulting atmospheric pressure gradient for the case of a sta-
tionary flow where the air moves horizontally along the x-
axis and vertically along the z-axis; there is no dependence
of the flow on the y coordinate. The stationary continuity
equation for the mixture of condensable (vapor) and non-
condensable (dry air) gases can be written as

∂(Ndu)

∂x
+

∂(Ndw)

∂z
= 0; (32)

∂(Nvu)

∂x
+

∂(Nvw)

∂z
= S; (33)

S ≡ w

(
∂Nv

∂z
−

Nv

N

∂N

∂z

)
= wN

∂γ

∂z
, N = Nv + Nd. (34)

Here Nd and Nv are molar densities of dry air and satu-
rated water vapor, respectively;γ≡Nv/N , see Eq. (2), S

(Eq. 34) is the sink term describing the non-conservation of
the condensable component (water vapor). Saturated pres-
sure of water vapor depends on temperature alone. Assum-
ing that vapor is saturated at the isothermal surface we have
∂Nv/∂x=0, soNv only depends onz. (This condition ne-
cessitates either that there is an influx of water vapor via
evaporation from the surface (if the circulation pattern is
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immobile), or that the pressure field moves as vapor is lo-
cally depleted. The second case occurs in compact circula-
tion patterns like hurricanes and tornadoes (Makarieva and
Gorshkov, 2011; Makarieva et al., 2011).) As the air ascends
with vertical velocityw, vapor molar density decreases due
to condensation and due to the expansion of the gas along
the vertical gradient of decreasing pressure. The latter ef-
fect equally influences all gases, both condensable and non-
condensable. Therefore, the volume-specific rateS(x,z) at
which vapor molecules are locally removed from the gaseous
phase is equal tow[∂Nv/∂z−(Nv/N)∂N/∂z], see Eqs. (1)
and (2). The second term describes the expansion of vapor at
a constant mixing ratio which would have occurred if vapor
were non-condensable as the other gases. (If vapor did not
condense, its density would decrease with height as a con-
stant proportion of the total molar density of moist air as
with any other atmospheric gas.) Further clarification of the
meaning of (Eq.34) is provided in Sect. 4.2 below, and in
Appendix A which offers additional interpretation, see also
(Gorshkov et al., 2012).

The mass of dry air is conserved, Eq. (32). Using this fact,
Eq. (34) and∂Nv/∂x=0 in Eq. (33) one can see that

N

(
∂u

∂x
+

∂w

∂z

)
+ w

∂N

∂z
= 0. (35)

Now expressing∂N/∂x=∂Nd/∂x+∂Nv/∂x from Eqs. (32)
and (33) with use of Eq. (35) we obtain

∂N

∂x
=

w

u

(
∂Nv

∂z
−

Nv

N

∂N

∂z

)
. (36)

Using the equation of state for moist airp=NRT and water
vaporpv=NvRT we obtain from Eqs. (36) and (25):

∂p

∂x
=

(
∂pv

∂z
−

pv

p

∂p

∂z

)
w

u
= −

γp

hγ

w

u
. (37)

Here velocitiesw and u represent vertical and horizontal
(along x-axis) velocities of the ascending air flow, respec-
tively. Scale heighthγ is defined in Eq. (25). A closely re-
lated formula for horizontal pressure gradient can be applied
to an axis-symmetric stationary flow with∂p/∂x replaced by
radial gradient∂p/∂r (Makarieva and Gorshkov, 2009b).

Equation (37) shows that the difference between the scale
heightshv andh (Eq. 25) of the vertical pressure distribu-
tions for water vapor and moist air leads to the appearance
of a horizontal pressure gradient of moist air as a whole
(Makarieva and Gorshkov, 2007; Gorshkov et al., 2012).
This equation contains the ratio of vertical to horizontal ve-
locity. Estimating this ratio it is possible to evaluate, for
a given circulation, what sorts of horizontal pressure gradi-
ents are produced by condensation and whether these gradi-
ents are large enough to maintain the observed velocities via
the positive physical feedback described by Eq. (37).

For example, for Hadley cells athγ =9 km, γ=0.03 and
a typical ratio ofw/u∼2×10−3 (Rex, 1958) we obtain from

Eq. (37) a pressure gradient of 0.7 Pa km−1. On a distance of
1500 km such a gradient would correspond to a pressure dif-
ference of around 10 hPa, which is close to the upper range
of the actually observed pressure differences in the region
(e.g., Murphree and Van den Dool, 1988, Fig. 1). Similar
pressure differences and gradients, also comparable in mag-
nitude toδps (Eq. 27) and ∂p/∂r are observed within cy-
clones, both tropical and extratropical, and persistent atmo-
spheric patterns in the low latitudes (Holland, 1980; Zhou
and Lau, 1998; Brümmer et al., 2000; Nicholson, 2000; Sim-
monds et al., 2008). For example, the mean depth of Arctic
cyclones, 5 hPa (Simmonds et al., 2008), is about ten times
smaller than the mean depth of a typical tropical cyclone
(Holland, 1980). This pattern agrees well with the Clausius-
Clapeyron dependence ofδps, Fig. 1b, which would pre-
dict an 8 to 16-fold decrease with mean oceanic tempera-
ture dropping by 30–40◦C. The exact magnitude of the pres-
sure gradient and air velocities will depend on the horizon-
tal size of the circulation pattern, the magnitude of friction
and degree of the radial symmetry (Makarieva and Gorshkov,
2009a,b, 2011; Makarieva et al., 2011).

Our estimate of the horizontal pressure gradient in a
Hadley cell illustrates that our approach when coupled to
fundamental atmospheric parameters, yields horizontal pres-
sure gradients of magnitudes similar to those actually ob-
served in large-scale circulation patterns. If we had obtained
a much smaller magnitude from Eq. (34) we could conclude
that the impact of the vapor sink is negligible and cannot ex-
plain the observations. This did not happen. Rather the result
adds credibility to our proposal that the vapor sink is a major
cause of atmospheric pressure gradients.

Difficulties in the understanding of atmospheric circula-
tion relate to circumstances where uncertainty over the dy-
namics of water vapor play a role – even if the nature of that
role remains debatable. For example, modern global circula-
tion models do not satisfactorily account for the water cycle
of the Amazon River Basin, with the estimated moisture con-
vergence being half the actual amounts estimated from the
observed runoff values (Marengo, 2006). We note that cli-
mate science offers no quantitative theory of Hadley circula-
tion based on current theories and the effects of differential
heating alone (Held and Hou, 1980; Fang and Tung, 1999;
Schneider, 2006). Efforts to address this challenge are on-
going but progress is limited (e.g.,Lindzen and Hou, 1988;
Robinson, 2006; Walker and Schneider, 2005, 2006). In one
recent review concerning theories of general circulation the
understanding of atmospheric moisture and its influences,
particularly,lack of relevant theoretical concepts, were iden-
tified as a persistent challenge (Schneider, 2006).

Furthermore, many climate researchers readily acknowl-
edge that the current incomplete understanding of the gen-
eral circulation precludes a theory-based analysis, from fun-
damental physical principles, of the role of latitudinal at-
mospheric mixing in stabilizing the Earth’s thermal regime
important – this is not a minor and thus neglected detail
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but is central in debates concerning climate sensitivity (e.g.,
Lindzen and Choi, 2009; Trenberth et al., 2010). It would
seem to many that new ideas are needed. If these ideas were
obvious, and followed directly from current paradigms, they
would have already been identified and accepted – thus we
should not be surprised that the new ideas we all seek may
challenge conventional perspectives. We conclude that our
approaches are a promising new avenue for further examina-
tion.

4.2 Condensation rate and hydrostatic equilibrium

Let us dwell in greater detail on the physical meaning of
Eq. (34) that specifies condensation rate in a unit volume.
The second term in brackets,(Nv/N)∂N/∂z, describes how
the molar density of vapor would change during adiabatic
ascent if the water vapor were non-condensable and there
would be no condensation in the column. This reference
term is needed to discriminate the density change caused by
condensation from the density change due to gravitational
expansion. As we presume that moist airas a wholeis in
hydrostatic equilibrium, see Eq. (20), it is total molar den-
sity N that must be used as such a reference. Indeed, total
molar density remains in hydrostatic equilibrium in the ab-
sence of condensation as well as in its presence. In the limit
Nv → N Eq. (34) gives a physically meaningful result,S=0.
Indeed, when atmosphere consists of water vapor onlyand
is in hydrostatic equilibrium, no condensation takes place.
Condensation occurs only when water vapor distribution is
non-equilibrium.

When condensation is absent, dry air is in hydrostatic equi-
librium. But when water vapor condenses and its distribution
is compressed several-fold compared to the hydrostatic dis-
tribution, the dry air must be“stretched” compared to its
hydrostatic distribution. Only in this case, when the non-
equilibrium deficit of vapor in the upper atmosphere is com-
pensated by the non-equilibrium excess of dry air, the moist
air as a whole will remain in equilibrium. The distribution of
Nd is non-equilibrium and cannot be used instead ofN in the
reference term in Eq. (34).

The horizontal pressure gradient produced by condensa-
tion is therefore a direct consequence of hydrostatic adjust-
ment. The air expands upwards to compensate for vapor
deficit, thus its pressure at the surface diminishes in the re-
gion of ascent. If no hydrostatic adjustment took place, the
dry air would remain in hydrostatic equilibrium (while moist
air as a whole would not). In this case dry air molar den-
sity Nd could be used in the reference term in Eq. (34).
Putting Nd instead ofN in Eq. (34), i.e., replacingS by
Sd≡∂Nv/∂z−(Nv/Nd)∂Nd/∂z in Eq. (33), and performing
all the derivations in Sect. 4.1, one obtains∂p/∂x=0. This
result is obvious: in the absence of hydrostatic adjustment,
the dry air distribution is not affected by condensation and
remains in equilibrium both in horizontal and vertical dimen-
sions. The non-equilibrium gradient of total air pressure re-

mains located in the vertical dimension and is not translated
onto horizontal dimension. Such a situation could take place
in an atmosphere that would be much higher than it is wide.
In the real atmosphere which is effectively very thin, most
part of the non-equilibrium pressure gradient is transferred to
the horizontal plane via rapid hydrostatic adjustment. Note
that Sd≡S/(1−γ ) andS≡Sd/(1+γd), γd≡Nv/Nd. The ex-
pressions for condensation rates in situations with or without
hydrostatic adjustment differ, respectively, by the absence or
presence of the multiplier 1/(1− γ ) in Eq. (34).

We emphasize that whether the hydrostatic adjustment
takes place or not, the disequilibrium gradient of total air
pressure persists, being located, respectively, either in the
horizontal or in the vertical dimension. Note that ifS = Sd
then S ≡ Sd ≡ 0, condensation is absent and atmospheric
pressure is in equilibrium in all directions (see Appendix A).

When asking for feedback on earlier versions of this text
several readers assumed that Eq. (34) for condensation rate is
an approximate form of the exact expression(Eq. 33). Here
we address this misunderstanding, see also Appendix A for
more details. Equation (33) represents a general continuity
(mass balance) equation for water vapor. It does not contain
any information about condensation – indeed, it is equally
valid for condensationS<0, evaporationS>0 or absence of
phase transitions altogether,S=0. Also, it is equally valid
for any dependence ofS on spatial coordinates, velocities,
temperature, pressure or any other variables. In other words,
the continuity equation universally applies to all circulation
events. In the meantime, our task here is to study only those
circulation patterns that are induced by condensation asso-
ciated with adiabatic ascent. To do so, we need to specify
termS in Eq. (33) so we can use this equation for the deter-
mination of condensation-induced pressure gradients. This
is done by means of Eq. (34), which says that: (1) in the
considered volume the only source of phase transitions is
condensation; (2) this condensation is caused by the adia-
batic ascent of moist saturated air (no condensation occurs
if the air moves horizontally because of isothermal surface)
and (3) that the moist saturated air is in hydrostatic equilib-
rium. We stress that none of these specific assumptions are
contained in the universal continuity equation (Eq.33). (In
contrast to the generally applicable Eq. (33), Eq. (34) would
not be valid, for example, for the case of adiabaticdescent,
or for a horizontal motion along a non-isothermal surface.)
We emphasize thatS (Eq. 34) is based on specific physical
considerations, not on formal mathematical analogies.

4.3 Regarding previous oversight of the effect

For many readers a major barrier to acceptance of our propo-
sitions may be to understand how such a fundamental physi-
cal mechanism has been overlooked until now. Why has this
theory come to light only now in what is widely regarded as
a mature field? We can offer a few thoughts based on our
readings and discussions with colleagues.
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The condensation-induced pressure gradients that we have
been examining are associated with density gradients that
have been conventionally considered as minor and thus ig-
nored in the continuity equation (e.g.,Sabato, 2008). For
example, a typical1p=50 hPa pressure difference observed
along the horizontally isothermal surface between the outer
environment and the hurricane center (e.g.,Holland, 1980)
is associated with a density difference of only around 5 %.
This density difference can be safely neglected when esti-
mating the resulting air velocityu from the known pres-
sure differences1p. Here the basic scale relation is given
by Bernoulli’s equation,ρu2/2=1p. The point is that a 5 %
change inρ does not significantly impact the magnitude of
the estimated air velocityat a given1p. But, as we have
shown in the previous section, for the determination of the
pressure gradient (Eq.37) the density difference and gradi-
ent (Eq.36) are key.

Considering the equation of state (Eq.5) for the
horizontally isothermal surface we havep=Cρ, where
C≡RT/M=const. Irrespective of why the considered
pressure difference arises, from Bernoulli’s equation
we know that u2

=21p/ρ=2C1ρ/ρ, 1ρ=ρ0−ρ. Thus,
if one puts 1ρ/ρ=1p/p equal to zero, no veloc-
ity forms and there is no circulation. Indeed, we
have u2

=21p/ρ=2C1ρ/ρ=2C(1ρ/ρ0)(1+1ρ/ρ0+. . .).
As one can see, discarding1ρ compared toρ does indeed
correspond to discarding the higher order term of the small-
ness parameter1ρ/ρ. But with respect to the pressure gradi-
ent, the main effect is proportional to the smallness parameter
1ρ/ρ0 itself. If the latter is assumed to be zero, the effect is
overlooked. We suggest that this dual aspect of the magnitude
of condensation-related density changes has not been recog-
nized and this has contributed to the neglect of condensation-
associated pressure gradients in the Earth’s atmosphere.

Furthermore, the consideration of air flows associated with
phase transitions of water vapor has been conventionally re-
duced to the consideration of the net fluxes of matterignoring
the associated pressure gradients. Suppose we have a linear
circulation pattern divided into the ascending and descend-
ing parts, with similar evaporation ratesE (kg H2O m−2 s−1)
in both regions. In the region of ascent the water vapor pre-
cipitates at a rateP . This creates a mass sinkE−P , which
has to be balanced by water vapor import from the region of
descent. Approximating the two regions as boxes of height
h, lengthl and widthd, the horizontal velocityut associated
with this mass transport can be estimated from the mass bal-
ance equation

ld(P − E) = utρhd, ut =
(P − E)

ρ

l

h
. (38)

Equation (38) says that the depletion of air mass in the
region of ascent at a total rate ofld(P − E) is com-
pensated for by the horizontal air influx from the re-
gion of descent that goes with velocityut via vertical
cross-section of areahd. For typical values in the trop-

ics with P−E∼5 mm d−1
=5.8×10−5 kg H2O m−2 s−1 and

l/h∼2×103 we obtainut∼1 cm s−1. For regions where pre-
cipitation and evaporation are smaller, the value ofut will be
smaller too. For example,Lorenz(1967) estimatedut to be
∼0.3 cm s−1 for the air flow across latitude 40◦ S.

With ρ≈ρd the value ofut can be understood as the mass-
weighted horizontal velocity of the dry air+water vapor mix-
ture, which is the so-called barycentric velocity, see, e.g.,
(Wacker and Herbert, 2003; Wacker et al., 2006). There is no
net flux of dry air between the regions of ascent and descent,
but there is a net flux of water vapor from the region of de-
scent to the region of ascent. This leads to the appearance of
a non-zero horizontal velocityut directed towards the region
of ascent. Similarly, vertical barycentric velocity at the sur-
face iswt≈(E − P)/ρ (Wacker and Herbert, 2003), which
reflects the fact that there is no net flux of dry air via the
Earth’s surface, while water vapor is added via evaporation
or removed through precipitation. The absolute magnitude
of vertical barycentric velocitywt for the calculated tropical
means is vanishingly small,wt ∼+0.05 mm s−1.

We speculate that the low magnitude of barycentric ve-
locities has contributed to the judgement that water’s phase
transitions cannot be a major driver of atmosphericdynamics.
However, barycentric velocities should not be confused with
the actual air velocities (e.g.,Meesters et al., 2009). Unlike
the former, the latter cannot be estimatedwithout considering
atmospheric pressure gradients(Makarieva and Gorshkov,
2009c). For example, in the absence of friction, the maxi-
mum linear velocityuc that could be produced by conden-
sation in a linear circulation pattern in the tropics constitutes

uc =
√

21p/ρ ∼ 40 m s−1
� ut . (39)

Here 1p was taken equal to 10 hPa as estimated from
Eq. (37) for Hadley cell in Sect. 4.1. As one can see,uc

(Eq. 39) is much greater thanut (Eq. 38). As some part of
potential energy associated with the condensation-induced
pressure gradient is lost to friction (Makarieva and Gorshkov,
2009a), real air velocities observed in large-scale circulation
are an order of magnitude smaller thanuc, but still nearly
three orders of magnitude greater thanut .

4.4 The dynamic efficiency of the atmosphere

We will now present another line of evidence for the im-
portance of condensation-induced dynamics: we shall show
that it offers an improved understanding of the efficiency
with which the Earth’s atmosphere can convert solar energy
into kinetic energy of air circulation. While the Earth on
average absorbs aboutI≈2.4×02 W m−2 of solar radiation
(Raval and Ramanathan, 1989), only a minor partη∼10−2

of this energy is converted to the kinetic power of atmo-
spheric and oceanic movement.Lorenz(1967, p. 97) notes,
“the determination and explanation of efficiencyη constitute
the fundamental observational and theoretical problems of
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atmospheric energetics”. Here the condensation-induced dy-
namics yields a relationship that is quantitative in nature and
can be estimated directly from fundamental atmospheric pa-
rameters.

A pressure gradient is associated with a store of poten-
tial energy. The physical dimension of pressure gradient co-
incides with the dimension of force per unit air volume,
i.e. 1 Pa m−1

=1 N m−3. When an air parcel moves along
the pressure gradient, the potential energy of the pressure
field is converted to the kinetic energy. The dimension of
pressure is identical to the dimension of energy density:
1 Pa=1 N m−2

=1 J m−3. As the moist air in the lower part of
the atmospheric column rises to heighthγ where most part
of its water vapor condenses, the potential energy released
amounts to approximatelyδps (Eq.27). The potential energy
releasedπv per unit mass of water vapor condensed, dimen-
sion J (kg H2O)−1, thus becomes

πv(Ts) =
δps

ρv
=

RTs

Mv

(
1−

MvgTs

L0s

)
. (40)

The global mean precipitation rate is
P∼103 kg H2O m−2 yr−1 (L’vovitch, 1979), global mean
surface temperature isTs=288 K and the observed mean
tropospheric lapse rate0o=6.5 K km−1 (Glickman, 2000).
Using these values and putting0o instead of the moist adi-
abatic lapse rate0s in Eq. (40), we can estimate the global
mean rate5v=Pπv at which the condensation-related po-
tential energy is available for conversion into kinetic energy.
At the same time we also estimate the efficiencyη=5v/I

of atmospheric circulation that can be generated by solar
energy via the condensation-induced pressure gradients:

5v = Pπv ∼ 3.5Wm−2, η ∼ 0.015. (41)

Thus, the proposed approach not only clarifies the dynamics
of solar energy conversion to the kinetic power of air move-
ment (solar power spent on evaporation→ condensation-
related release of potential power→ kinetic power gener-
ation), but it does so in a quantiatively tractable manner,
explaining the magnitude of the dissipative power associ-
ated with maintaining the kinetic energy of the Earth’s at-
mosphere.

Our estimate of atmospheric efficiency differs fundamen-
tally from a thermodynamic approach based on calculating
the entropy budgets under the assumption that the atmo-
sphere works as a heat engine, e.g.Pauluis et al.(2000);
Pauluis and Held(2002a,b), see alsoMakarieva et al.(2010).
The principal limitation of the entropy-budget approach is
that while the upper bounds on the amount of work thatcould
be produced are clarified, there is no indication regarding the
degree to which such workis actually performed. In other
words, the presence of an atmospheric temperature gradient
is insufficient to guarantee that mechanical work is produced.
In contrast, our estimate (Eq.41) is based on an explicit cal-
culation of mechanical work derived from a defined atmo-
spheric pressure gradient. It is, to our knowledge, the only

available estimate of efficiencyη made from the basic phys-
ical parameters that characterize the atmosphere.

4.5 Evaporation and condensation

While condensation releases the potential energy of atmo-
spheric water vapor, evaporation, conversely, replenishes it.
Here we briefly dwell on some salient differences between
evaporation and condensation to complete our picture regard-
ing how the phase transitions of water vapor generate pres-
sure gradients.

Evaporation requires an input of energy to overcome the
intermolecular forces of attraction in the liquid water to free
the water molecule to the gaseous phase, as well as to com-
press the air. That is, work is performed against local atmo-
spheric pressure to make space for vapor molecules that are
being added to the atmosphere via evaporation. This work,
associated with evaporation, is the source of potential energy
for the condensation-induced air circulation. Upon conden-
sation, two distinct forms of potential energy arise. One is
associated with the potential energy of raised liquid drops –
this potential energy dissipates to friction as the drops fall.
The second form of potential energy is associated with the
formation of a non-equilibrium pressure gradient, as the re-
moval of vapor from the gas phase creates a pressure short-
age of moist air aloft. This pressure gradient produces air
movement. In the stationary case total frictional dissipation
in the resulting circulation is balanced by the fraction of solar
power spent on the work associated with evaporation.

Evaporation is, fundamentally, a surface-specific process
because it represents a flux of water molecules via the sur-
face of liquid. In contrast, condensation is a volume-specific
process that affects vapor molecules distributed in a certain
volume. The balance between condensation and evaporation
demands that to compensate for the amount of moisture con-
densed in a certain volume vapor must be transported to
that local volume via its borders. Adding more gas to a gas
volume where condensation has occurred is associated with
compression of the gas in the volume and, hence, with per-
forming work on the gas.

In the stationary case, as long there is a supply of en-
ergy and the relative humidity is less than unity, evaporation
from the planetary surface is adding water vapor to the atmo-
spheric column without changing its temperature. The rate of
evaporation is affected by turbulent mixing and is usually re-
lated to thehorizontalwind speed at the surface. The global
mean power of evaporation cannot exceed the power of solar
radiation.

The primary cause of condensation is the cooling of air
masses as the moist air ascends and its temperature drops.
Provided there is enough water vapor in the ascending air, at
a local and short-term scale, condensation is not governed by
solar power but by stored energy and can occur at an arbitrar-
ily high rate dictated by theverticalvelocity of the ascending
flow, see Eq. (34).
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Any circulation pattern includes areas of lower pressure
where air ascends, as well as higher pressure areas where it
descends. Condensation rates are non-uniform across these
areas – being greater in areas of ascent. Importantly, in such
areas of ascent condensation involves water vapor that is lo-
cally evaporated along with often substantial amounts of ad-
ditional water vapor transported from elsewhere. Therefore,
the mean rate of condensation in the ascending region of
any circulation pattern isalwayshigher than the local rate
of evaporation. This inherent spatial non-uniformity of the
condensation process determines horizontal pressure gradi-
ents.

Consider a large-scale stationary circulation where the re-
gions of ascent and descent are of comparable size. A rel-
evant example would be the annually averaged circulation
between the Amazon River Basin (the area of ascent) and
the region of Atlantic ocean where the air returns from the
Amazon to descend depleted of moisture. Assuming that
the relative humidity at the surface, horizontal wind speed
and solar power are approximately the same in the two re-
gions, mean evaporation rates should be roughly similar as
well (i.e., coincide at least in the order of magnitude). How-
ever, the condensation (and precipitation) rates in the two re-
gions will be consistently different. In accordance with the
picture outlined above, the average precipitation ratePa in
the area of ascent should be approximately double the av-
erage value of regional evaporation rateEa. The pressure
drop caused by condensation cannot be compensated by lo-
cal evaporation so as to produce a net zero effect on air pres-
sure. This is because in the region of ascentboth the local
water vapor evaporated from the forest canopy of the Ama-
zon forest at a rateEa∼Ed as well as imported water vapor
evaporated from the ocean surface at a rateEd precipitate,
Pa=Ed+Ea. This is confirmed by observations: precipita-
tion in the Amazon river basin is approximately double the
regional evaporation,Pa≈2Ea (Marengo, 2004). The differ-
ence between regional rates of precipitation and evaporation
on land,R=Pa−Ea∼Ea, is equal to regional runoff – aerial
or liquid. In the region of descent the runoff thus defined is
negative and corresponds to the flux of water vapor that is
exported away from the region with the air flow. WhereR is
positive, it represents the flux of imported atmospheric water
vapor and the equal flux of liquid water that leaves the region
of ascent to the ocean.

The fact that the climatological means of evaporation and
precipitation are seldom observed to be equal has been rec-
ognized in the literature (e.g.,Wacker and Herbert, 2003), as
has the fact that local mean precipitation values are consis-
tently larger than those for evaporation (e.g.,Trenberth et al.,
2003).

The inherent spatial non-uniformity of the condensation
process explains why it is condensation that principally de-
termines the pressure gradients associated with water vapor.
So, while evaporation is adding vapor to the atmosphere
and thusincreasinglocal air pressure, while condensation

in contrastdecreasesit, the evaporation process is signifi-
cantly more even and uniform spatially than is condensation.
Roughly speaking, in the considered example evaporation in-
creases pressure near equally in the regions of ascent and
descent, while condensation decreases pressure only in the
region of ascent. Moreover, as discussed above, the rate at
which the air pressure is decreased by condensation in the
region of ascent is always higher than the rate at which lo-
cal evaporation would increase air pressure. The difference
between the two rates is particularly marked in heavily pre-
cipitating systems like hurricanes, where precipitation rates
associated with strong updrafts can exceed local evaporation
rates by more than an order of magnitude (e.g.,Trenberth and
Fasullo, 2007).

We have so far discussed the magnitude of pressure gradi-
ents that are produced and maintained by condensation in the
regions where the moist air ascends. This analysis is applica-
ble to observed condensation processes that occur on differ-
ent spatial scales, as we illustrated on the example of Hadley
cell. We emphasize that to determinewhere the ascending
air flow and condensation predominantly occur is a separate
physical problem. For example, why the updrafts are located
over the Amazon and the downdrafts are located over the
Atlantic ocean and not vice versa. Here regional evapora-
tion patterns play a crucial role. In Sect. 4.1 we have shown
that constant relative humidity associated with surface evap-
oration, which ensures that∂Nv/∂x=0, is necessary for the
condensation to take place. Using the definition ofγ (Eq.2)
Eq. (37) can be re-written as follows:

∂ lnγ

∂x
= −

w

u

∂γ

∂z
. (42)

This equation shows that the decrease ofγ with height and,
hence, condensation is only possible whenγ grows in the
horizontal direction,∂ lnγ /∂x>0. Indeed, surface pressure
is lower in the region of ascent. As the air moves towards the
region of low pressure, it expands. In the absence of evapo-
ration, this expansion would make the water vapor contained
in the converging air unsaturated. Condensation at a given
height would stop.

Evaporation adds water vapor to the moving air to keep
water vapor saturated and sustain condensation. The higher
the rate of evaporation, the larger the ratiow/u at a given
∂γ /∂z and, hence, the larger the pressure gradient (Eq.37)
that can be maintained between the regions of ascent and
descent. A small, but persistent difference in mean evapo-
ration1E<E between two adjacent regions, determines the
predominant direction of the air flow. This explains the role
of the high leaf area index of the natural forests in keep-
ing evaporation higher than evaporation from the open wa-
ter surface of the ocean, for the forests to become the re-
gions of low pressure to draw moist air from the oceans
and not vice versa (Makarieva and Gorshkov, 2007, 2010;
Makarieva et al., 2013). Where the surface is homogeneous
with respect to evaporation (e.g., the oceanic surface), the
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spatial and temporal localization of condensation events is
likely to fluctuate in a random fashion.

5 Discussion: condensation dynamics versus
differential heating in the generation of
atmospheric circulation

In Sect. 2 we argued that condensation cannot occur adia-
batically at constant volume but is always accompanied by
a pressure drop in the local air volume where it occurs. We
concluded that the statement that “the pressure drop by adi-
abatic condensation is overcompensated by latent heat in-
duced pressure rise of the air” (Pöschl, 2009, p. S12437) was
not correct. In Sect. 3 we quantified the pressure change pro-
duced by condensation as dependent on altitude in a column
in hydrostatic balance, to show that in such a column the
pressure drops upon condensation everywhere in the lower
atmosphere up to several kilometers altitude, Fig. 1c. The
estimated pressure drop at the surface increases exponen-
tially with growing temperature and amounts to over 20 hPa
at 300 K, Fig. 1b.

In Sect. 4 we discussed the implications of the
condensation-induced pressure drop for atmospheric dynam-
ics. We calculated the horizontal pressure gradients produced
by condensation and the efficiency of the atmosphere as a dy-
namic machine driven by condensation. Our aim throughout
has been to persuade the reader that these implications are
significant in numerical terms and deserve a serious discus-
sion and further analysis. We will conclude by discussing
condensation in contrast to differential heating, the latter con-
ventionally considered the major driver dominating atmo-
spheric dynamics.

Atmospheric circulation is only maintained if, in agree-
ment with the energy conservation law, there is a pressure
gradient to accelerate the air masses and sustain the existing
kinetic energy of air motion against dissipative losses. For
centuries, starting from the works of Hadley and his prede-
cessors, the air pressure gradient has been qualitatively as-
sociated with the differential heating of the Earth’s surface
and the Archimedes force (buoyancy) which makes the warm
and light air rise, and the cold and heavy air sink (e.g.,Gill ,
1982, p. 24). This idea can be illustrated by Fig. 1c, where
the warmer atmospheric column appears to have higher air
pressure at some heights than the colder column. In the con-
ventional paradigm, this is expected to cause air divergence
aloft away from the warmer column, which, in its turn, will
cause a drop of air pressure at the surface and the resulting
surface flow from the cold to the warm areas. Despite the
physics of this differential heating effect being straightfor-
ward in qualitative terms, the quantitative problem of pre-
dicting observed wind velocities from the fundamental phys-
ical parameters has posed enduring difficulties. Slightly more
than a decade before the first significant efforts in computer
climate modelling,Brunt (1944) as cited byLewis (1998)
wrote:

“It has been pointed out by many writers that it is
impossible to derive a theory of the general circu-
lation based on the known value of the solar con-
stant, the constitution of the atmosphere, and the
distribution of land and sea . . . It is only possible
to begin by assuming the known temperature dis-
tribution, then deriving the corresponding pressure
distribution, and finally the corresponding wind
circulation”.

Brunt’s difficulty relates to the realization that pressure
differences associated with atmospheric temperature gradi-
ents cannot be fully transformed into kinetic energy. Some
energy is lost to thermal conductivity without generating me-
chanical work. This fraction could not be easily estimated by
theory in his era – and thus it has remained to the present.
The development of computers and appearance of rich satel-
lite observations have facilitated empirical parameterizations
to replicate circulation in numerical models. However, while
these models provide reasonable replication of the quantita-
tive features of the general circulation they do not constitute
a quantitative physical proof that the the observed circulation
is driven by pressure gradients associated with differential
heating. AsLorenz (1967, p. 48) emphasized, although “it
is sometimes possible to evaluate the long-term influence of
each process affecting some feature of the circulation by re-
course to the observational data”, such knowledge “will not
by itself constitute an explanation of the circulation, since it
will not reveal why each process assumes the value which it
does”.

In comparison to temperature-associated pressure differ-
ence, the pressure difference associated with water vapor
removal from the gas phase can develop over a surface of
uniform temperature. In addition, this pressure difference
is physically anchored to the lower atmosphere. Unlike the
temperature-related pressure difference, it does not demand
the existence of some downward transport of the pressure
gradient from the upper to the lower atmosphere (i.e., the
divergence aloft from the warmer to the colder column as
discussed above) to explain the appearance of low altitude
pressure gradients and the generation of surface winds.

Furthermore, as the condensation-related pressure differ-
enceδps is not associated with a temperature difference,
the potential energy stored in the pressure gradient can be
nearly fully converted to the kinetic energy of air masses
in the lower atmosphere without losses to heat conductivity.
This fundamental difference between the two mechanisms of
pressure fall generation can be traced in hurricanes. Within
the hurricane there is a marked pressure gradient at the sur-
face. This difference is quantitatively accountable by the con-
densation process (Makarieva and Gorshkov, 2009b, 2011).
In the meantime, the possible temperature difference in the
upper atmosphere that might have been caused by the dif-
ference in moist versus dry lapse rates between the regions
of ascent and descent is cancelled by the strong horizontal
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mixing (Montgomery et al., 2006). Above approximately
1.5 km the atmosphere within and outside the hurricane is
approximately isothermal in the horizontal direction (Mont-
gomery et al., 2006, Fig. 4), see alsoKnaff et al. (2000).
Therefore, while the temperature-associated pressure differ-
ence above heightzc, Fig. 1c, is not realized in the atmo-
sphere, the condensation-associated pressure difference be-
low heightzc apparently is.

Some hints on the relative strengths of the circulation
driven by differential heating compared to condensation-
induced circulation can be gained from evaluating wind ve-
locities in those real processes that develop in the lower at-
mosphere without condensation. These are represented by
dry (precipitation-free) breezes (such as diurnal wind pat-
terns driven by the differential heating of land versus sea sur-
faces) and dust devils. While both demand very large temper-
ature gradients (vertical or horizontal) to arise as compared
to the global mean values, both circulation types are of com-
paratively low intensity and have negligible significance to
the global circulation. For example, dust devils do not in-
volve precipitation and are typically characterized by wind
velocities of several meters per second (Sinclair, 1973). The
other type of similarly compact rotating vortexes – tornadoes
– that are always accompanied by phase transitions of water
– develop wind velocities that are at least an order of magni-
tude higher (Wurman et al., 1996). More refined analyses of
Hadley circulation (Held and Hou, 1980) point towards the
same conclusion: theoretically described Hadley cells driven
by differential heating appear to be one order of magnitude
weaker than the observed circulation (Held and Hou, 1980;
Schneider, 2006), see alsoCaballero et al.(2008). While the
theoretical description of the general atmospheric circulation
remains unresolved, condensation-induced dynamics offers
a possible solution (as shown in Sect. 4.1).

Our approach and theory have other significant impli-
cations. Some have been discussed in previous papers,
for example with regard to the development of hurricanes
(Makarieva and Gorshkov, 2009a,b) and the significance of
vegetation and terrestrial evaporation fluxes in determining
large scale continental weather patterns (Makarieva et al.,
2006, 2009; Makarieva and Gorshkov, 2007; Sheil and Mur-
diyarso, 2009). Recently accumulated evidence directly doc-
uments air flows induced by the phase transitions of water va-
por (Chikoore and Jury, 2010). Other implications are likely
to be important in predicting the global and local nature of
climate change – a subject of considerable concern and de-
bate at the present time (Pielke et al., 2009; Schiermeier,
2010).

In summary, although the formation of air pressure gra-
dients via condensation has not received adequate theoreti-
cal attention in climatological and meteorological sciences,
here we have argued that this lack of attention has been un-
deserved. Condensation-induced dynamics emerges as a new
field of investigations that can significantly enrich our under-
standing of atmospheric processes and climate change. We

very much hope that our present account will provide a spur
for further investigations both theoretical and empirical into
these important, but as yet imperfectly characterized, phe-
nomena.

Appendix A

On the physical meaning of Eq. (34) for condensation rate

Equation (34) expresses condensation rate as the difference
between (a) the total change of vapor density with height and
(b) the density change caused by adiabatic expansion. Here
we explore the physical meaning of this expression from a
different perspective. We shall show that Eq. (34) follows
directly from the condition that the vertical distribution of
moist air remains in equilibrium under the assumption that
condensation rateS is linear over the amount of vapor (i.e.,
condensable gas) in the atmosphere.

A1 Linearity of condensation rate over the molar
densityNv of water vapor

The linearity assumption is justified by the particular physi-
cal nature and stoichiometry of condensation, with gas turn-
ing to liquid: condensation is a first-order reaction over satu-
rated molar densityNv of the condensing gas. This can be
experimentally tested by considering condensation of wa-
ter with different isotopic composition (e.g.,Fluckiger and
Rossi, 2003). (Note, for example, that the reverse process
(evaporation) is a zero-order reaction overNv.)

The rate of first-order reactions is directly proportional
to the molar density of the reagent, with the proportional-
ity constant having the dimension of inverse time:S = CNv,
whereC (dimension s−1) is in the general case independent
of Nv. In chemical kineticsC depends on temperature and
the molecular properties of the reagent as follows from the
law of mass action. Since the saturated concentrationNv of
condensable gas depends on temperature as dictated by the
Clausius-Clapeyron law, we can ask what the proportionality
coefficientC physically means in this case. Different sub-
stances have different partial pressures of saturated vapor at
any given temperature – this is controlled by the vaporization
constantL and the molecular properties of the substance.
Note too that for any given substance (like water) the satu-
rated concentration depends on various additional parameters
including the curvature of the the liquid surface and availabil-
ity of condensation nuclei. Therefore, a range of saturated
concentrations is possible at any given temperature. This al-
lows one to considerC andNv as independent variables in
the space of all possible combinations ofC andNv.

A2 The equilibrium

The notions of equilibrium and deviation from it are key to
determining the rate of any reaction. For example, in the case
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of evaporation the deviation from equilibrium is measured
by the water vapor deficit: the deviation of relative humidity
from the (equilibrium) unity value. Atmospheric condensa-
tion is peculiar in being physically associated with air move-
ment in a particular direction – water vapor condenses as the
air moves vertically towards a lower temperature.

Here, in the context of this derivation, by invoking the con-
cept ofequilibriumwe mean the vertical distribution that the
water vapor would locally take in the absence of condensa-
tion, all other conditions being equal. Let us denote the in-
verse scale height of such an equilibrium distribution forkE.
Condensation rateS is then proportional to the first order de-
viationkv of theobservedvertical distribution of water vapor
from the equilibrium:

kv = −
1

Nv

∂Nv

∂z
− kE. (A1)

The physics of Eq. (A1) consists of the fact that the character
of the considered equilibrium distribution is not affected by
condensation. For example, for the case ofhydrostatic equi-
librium any gas having molar massM, temperatureT and
finding itself on a planet with acceleration of gravityg in the
presence of a temperature gradient∂T /∂z will have a distri-
bution of its molar density following−∂N/∂z = kEN , where
kE = Mg/RT + (1/T )∂T /∂z. (But note that Eq. (A1) can
also be applied to describe physical equilibria of a different
nature. For example, in a vertically isothermal atmosphere in
the absence of gravitykE = 0.)

Such a formulation (proportionality of condensation rate
to kv) presumes that the deviationkv of the vertical distribu-
tion of water vapor from equilibrium is due to condensation
alone. (This premise is empirically testable: where conden-
sation is absent, the vertical water vapor distribution should
have the same scale height as the non-condensable gases and
moist air as a whole.) This removes the need to considerNv
as the saturated vapor concentration. Whenkv = 0, the con-
densation rate is zero independent of whether water vapor is
saturated or not. Whenkv 6= 0, Nv is saturated water vapor
by formulation.

A3 Distribution of vapor, dry air and moist air as
a whole

We write the condition that moist air with molar densityN is
in equilibrium in the vertical dimension as:

−
1

N

∂N

∂z
≡ k = kE, N = Nv + Nd. (A2)

Condensation causes the distribution of vaporNv to de-
viate from the equilibrium distribution. The condition that
moist air as a whole nevertheless remains in equilibrium
causes dry airNd to also deviate from the equilibrium – but
in the opposite direction to the vapor:

−
∂Nv

∂z
= (k + kv)Nv, −

∂Nd

∂z
= (k + kd)Nd, (A3)

kvNv + kdNd = 0, (A4)

kv = −
1

Nv

∂Nv

∂z
− k, kd ≡ −

1

Nd

∂Nd

∂z
− k. (A5)

The value ofkv describes the intensity of the mass sink.
In the case of water vaporkv > 0 is caused by a steep ver-
tical temperature gradient that causes vapor to condense
(Makarieva and Gorshkov, 2007; Gorshkov et al., 2012,
Sect. 3). From consideration of the Clausius-Clapeyron law
and hydrostatic equilibrium one can see that

kv =
L0

RT 2
−

Mg

RT
, (A6)

whereL is molar vaporization constant,0 ≡ −∂T /∂z is tem-
perature lapse rate, andM is molar mass of air.

The value ofkv is controlled by temperature lapse rate0 –
keeping all other variables constant, changing0 it is possible
for kv to take any value,−∞ < kv < ∞. This validates our
assumption thatkv can be kept independent ofNv when in-
vestigating the limit behaviorNv → 0 in Eq. (A10): for any
Nv (e.g., set by ambient temperature) any value ofkv can be
prescribed by changing0.

A4 The limit behaviour ∂Nd/∂x → 0

Using Eqs. (32), (33) and∂Nv/∂x = 0 we obtain (see also
Gorshkov et al., 2012):

u
∂Nd

∂x
= (Sd − S)

1

γd
, (A7)

where

Sd ≡ w

(
∂Nv

∂z
− γd

∂Nd

∂z

)
, γd ≡

Nv

Nd
. (A8)

The magnitude of condensation rateS in Eq. (A7) remains
unknown. Note that under terrestrial conditions 1/γd � 1.

Putting Eq. (A3) into Eq. (A7) using Eq. (A4) we obtain:

u
∂Nd

∂x
= −wkvNd

(
1+

Nv

Nd
+

S

wkvNv

)
. (A9)

Now puttingS = CNv into Eq. (A9) we have

∂Nd

∂x
= −wkv

Nd

u

(
1+

Nv

Nd
+

C

wkv

)
. (A10)

We require that∂Nd/∂x → 0 atNv → 0 (no horizontal den-
sity gradient in the absence of condensable substance). This
condition follows from considering that, aside from conden-
sation, there are no processes in the atmospheric column that
would make the air distribution deviate from a static equilib-
rium. This limit is general and should apply to all conditions,
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including cases where all other variables in Eq. (A10) are in-
dependent ofNv. From this condition we obtainC = −wkv
and

S = −wkvNv, (A11)

which is Eq. (34). An experiment to test this relationship
would be to consider a circulation with given vertical and
horizontal velocitiesw andu, setkv andNd and change the
saturated molar densityNv by either changing the condens-
able gas or the amount of condensation nuclei in the atmo-
sphere or temperature (see below) or both. One will observe
that as the condensable gas disappears from the atmosphere,
the horizontal pressure gradients vanish. (It is interesting to
note the following. Given that the spatial distribution ofNv
is exponential,Nv(z) = N0exp(−z/hN ), the local condition
Nv → 0 corresponds to complete disappearance of the con-
densable component from the atmosphere and restoration of
equilibrium in the horizontal plane. In comparison, the local
conditionkv → 0 does not presume that condensation is ab-
sent everywhere else in the atmosphere (it is plausible that
kv changes stepwise at the point where condensation com-
mences).)

In Eq. (A11) condensation rateS is a linear function
of three independent variables: vertical velocityw, local
amount of vaporNv and deviationkv of vapor from the equi-
librium distribution (kv can be characterized as the “condens-
ability strength” of atmospheric vapor). Note an interesting
relationship: withS given by Eq. (A11) andγ ≡ Nv/N we
haveSd−S ≡ Sγd ≡ Sdγ . WhenS = Sd we haveS ≡ Sd ≡ 0:
condensation is absent.

A5 Appendix summary

Equations (32) and (33), taken together, contain the infor-
mation that it is water vapor and not dry air that undergoes
condensation. Equation (34) contains information about the
magnitude of deviation from equilibrium that causes conden-
sation. Jointly considered, these facts are sufficient to deter-
mine the horizontal pressure gradient produced by the vapor
sink.

Note that in Eq. (A7) any small difference of the order
of γd betweenS andSd is multiplied by a large magnitude
1/γd � 1 and thus has a profound influence on the magni-
tude of the horizontal gradient∂Nd/∂z. We emphasize the
point we made in Sect. 4.2: if it were dry air to be in equi-
librium, i.e. kE = −(1/Nd)∂Nd/∂z, the same consideration
of the same equations would give∂Nd/∂x = 0 instead of
∂Nd/∂x = S/u as in the case when it is moist air that is in
equilibrium. The impact of this physical process on atmo-
spheric dynamics remains unexplored.
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Editor Comment.The authors have presented an entirely new
view of what may be driving dynamics in the atmosphere. This
new theory has been subject to considerable criticism which any
reader can see in the public review and interactive discussion of the
manuscript in ACPD (http://www.atmos-chem-phys-discuss.net/
10/24015/2010/acpd-10-24015-2010-discussion.html). Normally,
the negative reviewer comments would not lead to final acceptance
and publication of a manuscript in ACP. After extensive deliber-
ation however, the editor concluded that the revised manuscript
still should be published – despite the strong criticism from the
esteemed reviewers – to promote continuation of the scientific
dialogue on the controversial theory. This is not an endorsement or
confirmation of the theory, but rather a call for further development
of the arguments presented in the paper that shall lead to conclusive
disproof or validation by the scientific community. In addition
to the above manuscript-specific comment from the handling
editor, the following lines from the ACP executive committee shall
provide a general explanation for the exceptional approach taken in
this case and the precedent set for potentially similar future cases:
(1) The paper is highly controversial, proposing a fundamentally
new view that seems to be in contradiction to common textbook
knowledge. (2) The majority of reviewers and experts in the field
seem to disagree, whereas some colleagues provide support, and
the handling editor (and the executive committee) are not convinced
that the new view presented in the controversial paper is wrong.
(3) The handling editor (and the executive committee) concluded
to allow final publication of the manuscript in ACP, in order to
facilitate further development of the presented arguments, which
may lead to disproof or validation by the scientific community.
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